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Chapter 1 

INTRODUCTION 

An important topic in electromagnetic field analysis is the 

analysis of waveguide discontinuities.  This is because these dis- 

continuities are basic components in many microwave devices, so that 

an exact knowledge of their characteristics is essential. Also, the 

analysis of waveguide discontinuities, from a theoretical point of 

view, is an interesting problem.  The theory developed has found 

immediate application to some types of discontinuities, and has in- 

deed deepened the understanding of electromagnetics in general. 

Despite the extensive consideration of the subject, however, 

the analysis has been confined to a small set of discontinuities. 

Specifically, discontinuities that are coincident with or have regu- 

lar cross sections symmetric about one waveguide cross section and 

are uniform along one of the waveguide axes have been the most: fre- 

quently treated ones.  Furthermore, in a typical situation, only a 

limited number of discontinuities, usually one or two, of the same 

geometry would have been assumed.  General systems of discontinuities, 

it appears, have never been considered before. 

In analyzing waveguide discontinuities, the complete field 

solution is of very little interest.  Rather, the effect of the dis- 

continuities on the incident modes is what must be described as 

accurately as possible.  From an engineering perspective, descrip- 

tions employing networks of lumped elements are preferred. Any such 



network must, for a structure that is both lossless and reciprocal, 

obey the two basic network laws: the conservation of complex power law 

and the reciprocity law. 

One of the earliest methods used for determining the elements 

of the network representation of waveguide discontinuities has been 

the "Variational Method" [1].  In this method, the network elements 

are so expressed that they are stationary with respect to arbitrary 

small variations of some field related quantity about its true value^ 

That is, the network elements would be accurate to an order one higher 

than that of the trial quantity, A judicious choice of the trial 

quantity can then lead to remarkably accurate results. 

Although ingenious and powerful, the application of the 

Variational Method has primarily been restricted to single discon-^ 

tinuities of simple geometries and moderate sizes that are symmetric 

about a waveguide cross section.  This is because finding out the 

appropriate trial quantity, except perhaps for some simple geome- 

tries, requires a great deal of Insight into the problem, and, at 

times, solving another problem.  Furthermore, although the results 

obtained can be Improved in a systematic manner using Standard pro- 

cedure [2, Section 7-6], the process is quite.laborious.  An exten- 

sive collection of theoretical and numerical results for a large 

variety of waveguide discontinuities obtained using this method can 

be found in the Waveguide Handbook [3]. . " 



The Variational Method has gradually given way to the more 

general viewpoint of the "Method of Moments" [4].  Because of its 

variational character [5], and combined with the very fast develop- 

ment of computer systems and software techniques, the Method of 

Moments has become a basic tool in the study of waveguide discon- 

tinuities, as well as of many other areas of electromagnetics.  Here, 

the network representation is determined in terms of some field re- 

lated quantity, for which an operator, usually integral, equation 

is to be solved.  The solution proceeds by expanding the unknown field 

quantity as a linear combination of some appropriate functions.  En- 

forcing the governing equation in some way then leads to a matrix 

equation for the coefficients of the expansion, which can be solved 

using a matrix solution routine [6]. 

,  Moment solutions are analytically simple, in the sense that : 

no excessive manipulations are needed in order to minimize the compu- 

tational phase of the solution.  Furthermore, the amount of effort 

expended in solving for many discontinuities is the same as that is 

put solving for only one.  Since computer codes are always written, 

the automatic improvement qf the solutions is very easily done.  The 

Method of Moments, therefore, is well suited for solving systems of 

waveguide discontinuities, provided a suitable analysis can be given. 

Recently, the application of the Method of Moments to waveguide 

discontinuities has been an area of active research.  Specifically, 

single and triple inductive posts of circular cross section have 



been considered in [7], [8], where ni;my of their char.-jrteristlcs 

have been discussed. 

As is pointed out earlier, general systems of waveguide dis- 

continuities have yet to be considered.  It is the purpose of this 

dissertation to consider three such systems. 

The first system is that of multiple apertures of arbitrary 

shape in the transverse plane between two cylindrical waveguides. 

The second system consists of metallic obstacles in a rectangular 

waveguide that are uniform along the narrow side of the waveguide, 

but are otherwise of arbitrary shape and thickness, i.e., a system 

of inductive posts.  The third system consists of metallic obstacles 

in a rectangular waveguide that are uniform along the broad side of 

the waveguide, but are otherwise of arbitrary shape and thickness, 

i.e., a system of capacitive posts.  Common between the first and 

second systems are the inductive windows and strips in a rectangular  . 

waveguide, and between the first and third systems are the capacitive 

windows and strips in a rectangular waveguide. . - . 

The system of multiple apertures is considered in Chapter 2, 

and is depicted in Figure 1 there.  Assuming a multi-mode exciting 

field, a modal expansion is used to express the field in the two 

waveguides. A field equivalence theorem and Galerkin procedure are 

then utilized to obtain the generalized network representation of the 

apertures.  This representation is shown to obey the two basic net- 

work laws: the conservation of complex power law and the reciprocity 

law.  The scattering matrix is then deduced from the generalized 

network representation, and its properties are examined.  The analysis 



is subsequently specialized to the problems of inductive and capaci- 

tive windows in a rectangular waveguide, where the dominant mode is 

the only incident wave.  The impedance matrices of the windows are 

also obtained, and readily realized by networks of shunt reactive 

elements. 

The system of inductive posts, which can be seen depicted in 

Figure 1 of Chapter 3, is then considered.  The exciting field is 

taken to be the dominant waveguide mode. A complete field analysis 

of the problem is given.  The analysis is quite general, and results 

in an integral equation for the currents induced on the posts.  Later, 

this equation is solved through a Galerkin procedure.  The scattering 

and impedance matrices describing the effect of the posts on the 

dominant waveguide mode are then obtained and examined in detail.  The 

impedance matrix is subsequently realized by a two-port T-network of 

reactive elements.  The computed reactances of some post configurations 

are also reported. 

The system of capacitive posts is then considered in Chapter 4, 

where it is depicted in Figure 1.  Since this system is dual to that 

of the inductive posts, the analysis is drawn on similar lines.  Spe- 

cifically, a complete field analysis leads to an integral equation 

for the currents induced on the posts due to an incident dominant mode 

wave, which is later solved through a Galerkin procedure.  The scat- 

tering and impedance matrix representations of the posts are then 

extracted from the analysis, and their properties are discussed.  The 

impedance matrix is subsequently realized by a two-port T-network of 

reactive elements.  The computed reactances of  some selected post 

configurations are given. 



A word about the organization of the dissertation is in order, 

Each system of discontinuities is considered completely Independent 

of the others.  This is believed to be the best approach to the sub- 

ject, despite the repetition of some of the definitions and proofs. 

A discussion at the end of each chapter points out the important 

results of the analysis and closely related works.  Final remarks are 

given in Chapter 5. 



Chapter 2 

MULTIPLE APERTURES IN THE TRANSVERSE PLANE 

BETWEEN TWO CYLINDRICAL WAVEGUIDES 

Consider a system of apertures S , S  S of arbitrary 

shape located in the transverse plane between two uniform cylindrical 

waveguides A and B extending along the z-axis.  The mediums filling 

waveguides A and B are assumed linear, homogeneous, isotropic, and 

dissipation free, and are therefore characterized by the real scalar 

permittivities E and e^, and the real scalar permeabilities y and y, , 
a     b a     D 

respectively.  Figure 1 shows the problem at hand. 

1.  Basic Formulation 

Let a multi-mode field be incident in waveguide A.  Part of 

the incident field is then reflected into waveguide A, while the rest 

of it is transmitted into waveguide B. 

The total z-transverse field in both waveguides can be ex- 

pressed in modal form as [2, Section 8-2] 

E. = _ < 

-Y  .Z 
'ai y c . e     e . + y a. 

L i ,  1 
-\i^ e     e 

bi 

Y . 2 
e    e .    z < 0 

—ax 

z > 0 

H, -^ 

"Y . Z 
'ai 'ax V ai r        <ix )c.n.e     zxe.-)a.n,e    zxe 

^ i 'ai      -- —ax  4- X ai      — —ax 

V X bx 
bx e     zxe.. 

- —bx z > 0. 

(1) 

z < 0 



WAVEGUIDE A 

Figure 1.  Waveguides A and B opening into each other 

through S ,S ,...,S . 





All the modes TE and TM to z are included in the summation.  In (1), 

C.5 a., and b., are the amplitudes of the ith incident, reflected, 

and transmitted modes, respectively.  Y • and ri  are, respectively, 

the modal propagation constant and characteristic admittance of the 

ith mode in waveguide A: 

= < 
ai 

31^, / 

a = K . 
1   ai 

ai 

a 

X < X . 
a   ax 

X > X , 
a   ai 

(2) 

ai 
jcoe. 

^ai 

for TE to z modes 

for TM to z modes. 

(3) 

Here, ic is the wave number of the waveguide medium, K . is the ith 
a ax 

mode cutoff wave number, and X and X . are the corresponding wave 
a     ax 

lengths.  The parameters for waveguide B, y, . and ri, .» are similarly 
bx     bx 

defined.  Finally, the modal vectors, e^ . in waveguide A and e       in 
ax bi 

waveguide B, are assumed real and so normalized that 

1     i = j 

e . . e . 
*qx  -qj 

ds = < (4) 

0 ^  3 

The Integration in (4) is taken over the cross section of waveguide 

Q e {A,B}, and q e {a,b} is such that (Q,q) = (A,a) or (B,b). 

For a complete field solution, the amplitudes a. and b, of 

the various modes in the two waveguides are to be determined.  This 
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can be accomplished with the help of a field equivalence theorem. 

Let the exciting field be incident in waveguide A while S are 

covered by perfect conductors.  This field, sometimes referred to as 

the generator field, is denoted (E~,  H ).  The field equivalence 

theorem [2, Section 3-5] states that the field in waveguide A is iden- 

g    o- 
tical with (E^^, H ) plus the field produced by the magnetic current 

sheet M = \__J  M where 
m=»l 

M™ = ^ X E on S" (5) 

while each S is covered by a perfect conductor.  The field in waveguide 

B is then identical with the field produced by the magnetic current -M 

while each S  is covered by a perfect conductor.  Figure 2 shows the 

equivalent situations. 

The z-transverse field produced by M in waveguide A, denoted 

(E (M), H (M)), and that produced in waveguide B by -M, denoted 
—a —  —a — 

(E, (-M), H, (-M)), have the same form as (1), except that there is no 
—b —  —b — 

exciting field.  Thus, the total z-transverse field in both waveguides 

is given by 

-y   .z Y ■^ Y •^ 
E^ + E(M) = yc.e ^^e.-Vc.e^^ e.+Yd.e^^ e. 
—t  —a -   V  i      —ai  {■    1     —ai  V  i     —ai 

X 11 

z < 0 
E. = \ 

-\i^ E^(-M) = I b.e  ''"  e^. z > 0 

(6) 



(a) 

I-M' 

_M' 

(b) 

11 

(E', H') M I 
t 

Figure 2.  (a)  The equivalent situation for waveguide A. 

M  exists only on S . 

(b)  The equivalent situation for waveguide B. 

_M  exists only on S . 
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H = 

H^ + H (M) = y en . e 
—t  —a —   i     ^ ^^ 

z X e . + y c^n . e ^  z X e 
— —ax  r i ai     — —i ai 

- I d.n 
Y -iZ 'al 

1 ai 
z X e 

-ai 

H^C-M) = I  b.n^, e 
-^bi^ 

z X e, . 
— —bi 

z < 0 

z > 0. 

In (6), c, d., and b. are, respectively, the amplitudes of the ith 

incident mode, the ith mode produced in waveguide A by M, and the ith 

mode produced in waveguide B by -M.  It then follows from (5) and 

(6) that 

y  d. z X e .     on A 
V  1 — —ai „ 
1 z=0 

M = ^ * (7) 

y b . z X e, . 
V   1 — —bi 

on B 
z=0 

The placement of magnetic current sheets M in waveguide A and -M 

in waveguide B over each S therefore ensures the continuity of E 

across the apertures.  The continuity of H , however, requires that 

2yc.n   .   zxe   .   =  yd.ri   .   zxe   .+y b.H, .   zxe 
V     1 ax —   —ax       r     X ax -    —ax       t     x bx —    —bx 

,m 
on S   ,   1  < ra < p (8) 

which is, together with (7), the equation determining the amplitudes 

d. and b .. 
X        X 
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2.  The Generalized Network Representation 

An exact solution of (7) and (8) for the amplitudes d. and b., 

and consequently the complete field solution, can rarely be obtained. 

However, only a representation of the apertures that describes their 

effect on the modes of the waveguides, not the amplitudes of these 

modes, is usually all that is needed.  In this section, a representa- 

tion in terms of two generalized networks is derived. 

Since the set {e .1 i = 1,2,...} is complete [9, Section 5-6], 

a finite subset of the lower order modes can be used to approximate 

the field in waveguide Q.  Thus, (7) and (8) become 

M = < 

I 
a 
y d . z X e . 

.^-i X — —ai 1=1 

y b . z X e, . 
. T 1 — —bi 1=1 

on A 

on B 

z=0 

z=0 

(9) 

a a u 
y c.ri.zxe.= y d.ri.zxe.+ y b.ri, . zxe, . 

.'^,  1 ai — —ai .^^ 1 ai — —ai   .^, i bi — —bi 
i=l 1=1 1=1 

m 
on S , 1 < m < p (10) 

where I    and L are, respectively, the number of modes used in the 
a     b 

modal expansion of the fields in waveguides A and B. Here, d. and b 

are no longer the actual mode amplitudes.  Only in the limit, as I 

and L go to infinity, they become so.  However, for sufficiently 
b 

large £ and £ , it can be assumed that d. and b. in (9) and (10) 
a     b ^     ^ 

represent the actual mode amplitudes, while equality still holds 

there. 
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Let  {M. |l£j£p   }bea set  of  real vectors,  and put 

m 
p „in m 

,,m   V V. M. 
M = 2. J -3 

j=l 

(11) 

,m 
where V. are complex coefficients to be determined.  Substituting 

(11) into (9), it becomes 

m 

I   V"^M" 
j=l 

J -J 

y  d. z X e .   on A 
. ,   1 — —ai 
1=1 

>   b. z X e, .   on B 
.^T   1 — --bi 
1=1 

z=0 

2=0 

(12) 

Put 

w 
qk 

M • z X e , ds 
-  -  -qk 

z=0 

(13) 

It then follows from (4) and (12) that 

m 

! \ V ak 
m=l j=l  ^ J m 

M. • z^ ^ £ , ds = d 
J       ak     k 

=  I  b. 
1=1  ^ 

zxe, .'zxe^ds,  l<k<£ 
—  —bi  —  —ak       —  — a 

AHB 

(14) 

m 
,ni 

bk   ^1-1   3 
m=l 3=1    i m 

M. • z X e^, ds 
-2       -      -bk 

=  I  d. 
i=l  "-  • 

z X e . • z X e,, ds = b, ,  1 < k < £, . 
—ai  —  —bk      k    —  — b 

(15) 

Finally, scalarly multiplying (10) by M. and integrating over S , 

it becomes 



15 

2 ) c,r). M. •zxe.ds= T d.n. 
.^, 1 ai I —3 - —ai >- X 'ai 
1=1      i,m    -^ 1=1      J m 

M. • z X e . ds 
-j  -  -ai 

b       r 

+ I    ^i\i        MT • 1 ^ -i^-i'^s.  1 < m < p. 1 < j < p" 
i=l      ^m -bi 

In matrix form, (14), (15), and (16) become 

(16) 

w = H V = d = H b a   a 

->-     ->-    -*■  -^ 

w, = R V = Hd = b 
b   b 

2 H Y c = H Y  d + H^Y , b , a oa    a oa    b ob 

(17) 

(18) 

(1?) 

Here, T denotes matrix transpose, w is the vector 

q   qi iiq X 1 
(20) 

V is the p segment vector whose mth segment is the vector 

r = [v"] 
J p^xl 

(21) 

c, d, and b are the vectors 

^ = ^""i^i   xl 
■^  a 

^=f^i^^xl 

^=f^5.,xl 

(22) 

(23) 

(24) 

H is the p block row matrix whose mth block is the matrix 
q 
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q 
'm 

z X e . 
-  -qi 

M^ ds] 
"J    Jlxp™ 

q 

(25) 

Y  is the diagonal matrix 
oq 

^ ^  q q     q q 
(26) 

and H is the matrix 

■^  b a AHB 
b a 

(27) 

Since H , H, , and H depend only on the sets of waveguide modes used 
a  b _ , , mi 

in the modal expansion, the set W S-^ ilCi  of magnetic currents, m=l 3=i —j m=l 3=1 -J 

and the shape of the apertures, it readily follows from (17) and 

(18) that , 

H, = HH 
^ b    £ 

T 
H H = U 

T HH = TJ 

(28) 

(29) 

(30) 

U is the identity matrix of order £  in (29), and of order i    in 

(30).  Using (17) and (18), (19) becomes 

(Y + Y^)V = I 
a   b 

(31) 

where 

Y = H Y  H 
q   q oq q 

-»-     T  ^ 
I = 2 H Y  c 

a oa 

(32) 

(33) 
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By (31), the generalized network representation of the aper- 

tures is finally obtained. This representation consists of two net- 

works Y and Y, in parallel with the current source I, as (31) 
a     b 

readily indicates. Figure 3. depicts such a representation.  In the 

following two sections, the generalized network representation is 

shown to obey the two basic network laws: the conservation of com- 

plex power law and the reciprocity law. 

3.  The conservation of Complex Power Law 

The complex power transmitted through the apertures into 

waveguide B is basically 

tr 
E X H  • z ds (34) 

z=0 

where * denotes complex conjugate.  Substituting from (5) and (6), 

and using (13), (34) becomes 

K 
(35) 

In matrix form, (35) becomes 

P^  = b Y , w, 
tr      ob b 

(36) 

In (36), H denotes matrix Hermitian.  It then follows from (18) 

and (32) that 

tr 
b Y ^b 

ob 
V H"Y ,H V = V^, V 

b ob b      b 
(37) 

Thus, the complex power transmitted into waveguide B is equal to the 
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< 

m 

p + V 
p". 

Il 
y 

Yb 

+    P V 

0 

J^' 
(D 

Figure 3.  The generalized network representation of the 

apertures. 
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complex power at the terminals of network Y . 

The total complex power entering the apertures from waveguide 

A is given by 

P.  =      E X H  • z ds  . (38) m  J    -  _   _ 

z=0 - 

Substituting from (5) and (6), and using (13), (38) becomes 

P.  = y  (2c* - d*)n*.w . . (39) 
xn  .^,   1   1 ax ax 

1=1 

In matrix form 

P  = 2c Y w - d^ w  . (40) 
xn       oa a     oa a 

It then follows from (17), (32), and (33) that 

P  = 2c Y  d - d Y d = 2c^ H V - V^ Y H V 
in       oa      oa       oa a      a  oa a 

= i»V - V«Y« V . (41) 
a   . 

Thus, the total complex power entering the apertures from wave- 

guide A is equal to the complex power supplied by the source I minus 

that at the terminals of network Y . a 

The conservation of power law states that the total complex 

power in any network must be zero, or 

P  - P  E 0 . (42) 
tr   in 

This is guaranteed because of (31).  The conservation of complex 
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power law holds if and only if the complex power flow across the aper- 

tures is continuous. 

4.  The Reciprocity Law 

Let a multi-mode field be incident in waveguide B.  The total 

z-transverse field in both waveguides is then 

E' = <, 
—t 

Y -z 
) d e    e . 
.  1     —ai 
X 

H' = < 

Y .2 
y d I ri , e    z ^ e . r 1 ai —ai 

z < 0 

y c! e ^^ e,. + y a! e ^^ e^.    z > Q 
f i     -bi  j  1      -bi 
1 i 

z < 0 

Yi_ . z ~Yu • z r  .     bi , r  •      bi ) c ru . e    z X e, . + ) a n, . e     z x e 
V i 'bi     - -bi  V X bi      - 
1 1 

z > 0 

(43) 

bi 

where d, al, and dl are, respectively, the amplitudes of the ith 
11      1 

incident, reflected, and transmitted modes. 

The generator field (E'^, H'^) is the field that would exist 

if the exciting field was incident in waveguide B while all S were 

covered by perfect conductors.  By the field equivalence theorem, the 

z-transverse field in waveguide B is identical with (E^ , H^ ) plus 

the z-transverse field (E'(-M'), H'(-M')) produced by the magnetic 
— b ~   —D — 

curren t sheet -M' = \y   -  M where 
m=l 

M'"" = z X E' on S (44) 
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,m 
while each S is covered by a perfect conductor.  The z-transverse 

field in waveguide A is then identical with the z-transverse field 

(^'(M'), H'(M')) produced by the magnetic current M' while each S 

is covered by a perfect conductor. 

The total z-transverse field in both waveguides is then 

m 

K 

\l^ E^(M') = I d! e ^^ e^^ z < 0 

Y  Z —Y  z —Y . Z 
E'^+E'(-M') = ^ cle ^^ e^.-^cle ^^e-.+ ^ble ^^ 
—t —b -    . X —bi . 1     —bi i" 1 

1 1 i 
bi 

K 

Y .z ai 
H'(M') = - y din . e ^ z X e , 
—a —      ^ 1 ai     —  —ai 

z > 0 

z < 0 

(45) 

= < 

Y, . z -Yu • z bi   ,.     V  ...  . bi 
H.g+H.(-M') = - I  c^n^^ e ^ ^ X £bi-^ 4V"   ^^^bi 

+ I  b:n, . e 
i" 1 bx 

-\l^ 
z X e ■hi 

z > 0 

In (45), cl, d', and b! are the amplitudes of the ith incident mode, 

the ith mode produced by M' in waveguide A, and the ith mode produced 

by -M' in waveguide B, respectively. The continuity of ^' across the 

apertures implies that 

M' = ' 

y dl z X e . 
h    1 -  —ax 

on A 

y b! z X e, .     on B 
h    1 -  -bx 

z=0 

z=0 

(46) 

whereas for that of H' 
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on s"*, 1 < » < p        (A7) 

must be satisfied. 

Let a fInlt^ subset of the lower modes in waveguide Q b« used 

tq approximate the field there. The cardinality of this set is set 

equal to Z  .    Put 
q ■ ■ , •■ 

m 

, "qi ' J    ^' • z ^ e^^ ds (49) 

wh^re y! are complex coefficients to be determined. This situation 

is analogous to that in Section 2, and can similarly be treated. Thus, 

in analogy with (17), (18), and (19), on^ obtains 

;^' - H V' = d' » H'^b' (50) 
a   a     . 

V' » H,\^' = H^' - b' (51) 
b   b 

2H?y ^c' - H'^'Y d' + nh ,P . (52) 
p ob     a oa    b ob 

Here, w', V, c', d', and b' are Refined ap are their coi^nterparts 

w , V, c, d, and b^ respectively. 

Using (30) and (51), (52) become? 

(Y + 1) V* = I' (53) 
a   b 

where 
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.  I' = 2EI  Y J . (54) 
b ob 

The generalized network representations of the apertures correspond- 

ing to (53) is similar to that shown in Figure 3, except for V' and 

I' replacing V and I, respectively.  The reciprocity law then states 

that 

->-T->-    -> T->- 
VI' = V T . '■    .. (55) 

This can be shown with the help of the reciprocity theorem. 

The reciprocity theorem [2, Section 3-8] states that 

(E-*- X H^ - E^ X H^) • n ds = 0 (56) 

W 

where W is the closed surface enclosing the volume containing the 

apertures, (E "^, H"*") and (E , H ) are source-free fields within this 

volume, and n is the outward unit vector normal to W.  Let W be the 

surface consisting of all the metallic walls between the cross 

sections of waveguide A at z = z^^ and waveguide B at z = z^. for 

some z, < 0 and z > 0, and these two waveguide cross sections, and 

let (E"'", H"*") and (E^, H^) be the fields whose transverse components 

are given by (6) and (45), respectively.  Substituting in (56) and 

using (4), (56) becomes 

^a ^b 
2 ^f c^n^id^ = 2 l^  c|n,,b. (57) 

or in matrix form ' 

2d'^Y c = 2^^Y J' , (58) 
oa      ob 
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The reciprocity law then follows from (18), (33), (50), (54), and 

(58).  The reciprocity law holds if and only if the whole structure 

is reciprocal. 

5.  The Scattering Matrix 

Another representation of the apertures is In terms of their 

scattering matrix. Following Montgomery et al. [10, Section 5-14], 

the scattering matrix is defined as 

S = 

aa 

ba 

ab 

bb 

(59) 

where the iith element of S  is the amplitude of the ith mode in 
-' qo 

waveguide Q due to the jth mode of unit amplitude incident in wave- 

guide 0 (0 e {A,B}). 

Put 

a = [a ]^ ^^ 
a 

(60) 

a'= [a-],  ,. 
■^  b 

(61) 

It then follows from (1), (6), (22), (23), (43), and (45) that 

a = d - c (62) 

!• = b' - c- (63) 

The scattering submatrices S  . S, ^, S  , and S  are then given by 
aa'  ba  ab bb 
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t-sj (65) 

d' = S ,c' (66) 
ab 

a' = S,,c' . (67) 
bb 

The submatrices of S can be deduced from the analysis in 

Sections 2 and 4, almost immediately.  Using (17), (31), and (33), 

(62) becomes 

1 = (2 H (Y + Y, )"■'- H'^Y  - U)c . (68) 
a a   b    a oa 

Consequently 

S  = 2 H (Y + Y, )"■'" H^Y  - U . (69) 
aa     a a   b    a oa 

Similarly, from (18), (31), (33), and (65), it follows that 

S,  = 2 H, (Y + Y,)"^ H^Y ^ (70) 
ba    b a   b    a oa 

or, on using (28) and (69), 

S,  = H(S  + U). (71) 
ba     aa 

The reciprocity law can be used to determine S , .  Substi- 

tuting (65) and (66) into (58), it becomes 

P"^ S\Y    t-t'' Sl    Y^c.  . (72) 
ab oa      ba Ob   * 

Thus 

S^u = Y'^ SJ Y , (73) ao   oa ba ob 

->■->• 

since (72) holds for all c and c. 
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Finally, using (51), (53), and (54). (63) becomes 

?  = (2 H, (Y^ + 1) ^ nh ,   -  U) c' . 
b a   b    b ob (74) 

Consequently 

bb 
2 H, (Y  + Y, ) ■"" HJ Y , b a   b    b ob - U (75) 

QV 

bb HS , - U ab (76) 

as follows from (51), (63), (66), and (67). 

Let the multi-mode field be incident on the apertures simul~ 

taneously in waveguides A and B. The total z-transverse field in both 

waveguides is readily found from (1) and (43) as 

E, = < 

-Y .Z Y .Z Y -Z 
) c.e    e . + ) a.e    e . + \ die    e . f X     —ai  t 1     —ax  I X     —al 

iit 

z .^ 0 

r T-   bi    , n  , 'bx     . r  I   bx 
) b.e    e, . + ) c e    e, . + ) a! e     e, . I i     —bx  !< X     —bx  ^    i      —hi 

z > 0 

-Y .z Y .z v       'ax V       ax )c.n.e     zxe,-)a.ri.e    zxe, ^ X 'ax      -  -ai  fy    x ax -     -ai 

Y .2 
- y d'n . e ^^  z X e .  z < 0 

t* X ax      ~  -ax 

(77) 

I \\x ^ -\±^ V _.„  _^bx=^ z X e, . - ) c'ri, . e    zxe,. 
-bx  r i bx     -  —bi 

+ \ '[\x 
-\x^ z X e, .  z > 0 

-bx 
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The complex power to the left of the apertures is then given by 

+ a +  d')  Y  (c - a P^ =(c+a+d')  Y  (c-a-d') 
0 oa 

(78) 

whereas that to the right of the apertures is 

P^ = (b+c' +a')Y,(b-c' +a') 
(J Ob 

(79) 

Here, as before, a finite subset of the lower order modes of cardi- 

nality £  is used to approximate the field in waveguide Q. By the 

conservation of complex power law, P  and P  must be equal.  Put 

Y = 

oa 

ob 

(8Q) 

(81) 

Then, using (59), (64), (65), (66), and (67), 

C S^ S C + C (Y S - S^ )C = C^ C . (82) 

Since C is completely arbitrary, (82) gives 

S^ S + (Y S - S^ ) = Y (83) 

Although the whole structure is both reciprocal and lossless, 

the scattering matrix is neither symmetric nor unitary. 
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6.  Inductive Windows in a Rectangular Waveguide 

Consider a system of windows W , W ,...,W located in the 

z=0 plane In a rectangular waveguide.  These windows are assumed uni- 

form along the narrow side of the waveguide, i.e., of the inductive 

type.  The waveguide medium is assumed characterized by the real 

scalar constitutive parameters f. and p.  Figure A shows the situation 

at hand. 

Let a TE,„ to z mode of unit amplitude be incident on the 

windows from the left.  This mode has the field distribution 

E = e    e 

i      -^l' H = n^ e    z X e^-^- e 
1   ^l" d 

Ihc^^^l  • 

(84) 

In (84) 

e, = /—r sin (- x) y 
—1   J ab     a 

(85) 

and the subscript "a" is dropped from y^  and n-, •  Furthermore, 

it is assumed that a < X '^ 2a and 2b < A so that only the dominant 

mode can propagate in the waveguide. 

Since the window-waveguide structure is uniform along the 

y-axis, and since the incident mode has only an E  component that 

does not vary with y, the field scattered must have only an E com- 

ponent that does not vary with y.  The only modes excited in the wave- 

guide are therefore TE  to z modes, since these are the only modes 
° no 

having only an E  component that does not vary with y [2, Section 

4-3].  The field distribution of any such mode is similar to that 
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w 

w 

z = 0 

Figure 4.  p Inductive windows in a rectangular waveguide, 



of the dominant mode, viz. 
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±Y z 

—n       —t 

H - + n e "f 
-ti    n 

z X e - -T— e    -r- X X e 
j(f)Vi      3x -  -T 

where 

.2     .    /mi . ^■^ sin (~ X) i 

and 

/.mT.2  ~2 
{   "  / i-—) - < 'n  V a' 

(86) 

(87) 

(88) 

The change of subscripts from 1 to n Is for later convenience. 

The total z-transverse field has only a y-coraponent of elec- 

tric field that does not vary with y.  It then follows from (5) that 

each M™ has only an x-component that does not vary with y: 

M"" - M'"(X)X    on W" . (89) 

The generalized network representation of the windows can be 

obtained as indicated in Section 2. Here, however, the whole set of 

modes is used, which calls for some minor changes In the formulas 

there. 

Since the dominant mode is the only incident mode, c now 

becomes 

t5-,J in'w-xl • 

In (90), 6  is the Kronecker delta function 
un 

(90) 
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6 = < un 

u = n 

u ?* n 

(91) 

The vectors w , d, and b are likewise vectors of infinite length. 

Furthermore, since the mediums on both sides of the windows are 

identical. 

W  = W- = w 
a   b (92) 

H = K = H 
a   b   o (93) 

Y  = Y ^ = Y 
oa   ob   o (94) 

H is then the identity matrix of infinite order.  Consequently 

Y = Y^ = Y = H Y H  . 
a   b       o o o (95) 

The generalized network representation of the windows then becomes 

Y V = I (96) 

where Y is the p by p block matrix whose £mth block is the matrix 

= £m _ r^^mi 
= [ I n. ii  £ m    ^ ■ n 1 n 

p xp    n=l  J£ 
M^e ds' 
1 n 

W 

e M.ds] . 
n 1   £ m ,m   -^  p xp 

(97) 

and I is the p segment vector whose £th segment is the vector 

i^ = [ij] ^  = [-n^  M! e ds] 
^ p^l     ^ ^Z     ^    ^       p xl 

(98) 



32 

This representation |s depicted in Figure 5. 

Minor changes are also due £or the scattering jnatrix of the 

windows.  The higher order  (n > 1) modes excited are evanescent, 

i.e., decay exponentially with distance from the windows.  Thus, at 

sufficiently large distances, only the dominant mode exists.  The 

scattering matrix can then be defined as 

S == 

'{ 
(99) 

The mode-amplitude vectors there then reduce to scalars, viz., 

[a,   b, d, a', b', d'} 

(100) 

g (: {c, c '} 

while H becomes thq p segment row vector h whose mth segment is 
o o 

the row vector 

h™= [h"*.]     = [■ I  e, M"' ds] 
Jm ^  J   Ix 
W 

m (101) 

H is then unity.  The scattering parameters are readily found from 

(69). (71), (73). and (76) as 

m 

a-, = a' = 
m- 

P  P 

>=1 j=l  ^ / w ,m 
e-,   M. ds 
1  J 

(102) 

b^ = d'^ = 1 + a^ = .1 + aj (103) 
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Figure 5. The generalized network representation of the 

windows. 
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The scattering matrix is both symmetric and unitary. Notice 

that the second term in the left-hand side of (82) then accounts for 

the reactive power basically due to the evanescent modes. 

7. Capacitive Windows in a Rectangular Waveguide 

Consider now the system of windows W , W , ..., W^ in a recT 

tangular waveguide shown in Figure 6. These windows, as can be seen, 

are uniform along the broad side of the waveguide, i,e., of the 

capacitive type. The waveguide medium is assumed characterized by 

the real scalar constitutive parameters e and y. 

Let a TE, „ to z mode of unit amplitude be incident on the 

windows from the left.  This mode has the field distribution 

-YQZ 

-YnZ 
H = riQ e z X e„ - 

1 -^0^ a 
-:— e    T— 

^ 

(104) 

where 

e = /—r sin (- x) y. ■^  ./ ab     a   — 
(105) 

Here, the index of the dominant mode is "0" rather than "1" as in 

(84) and (83).  It is still assumed, however, that a < X < 2a and 

2b < A so that only the dominant mode can propagate in the waveguide, 

Since the window-waveguide structure is uniform along the 

X-axis, and since the incident mode has an H component that varies 

as sin (— x) and no x-component of electric field, so must be the 
a 

scattered field. The only modes excited in the waveguide are 
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t 
I vv' 

w 
z*0 

Figure 6.  p capacitlve windows in a rectangular waveguide, 
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therefore TE.,  to x, since these are the only modes having an H 
In X 

TT 
component that varies as sin (— x) along the x-axis and no E com- 

a x 

ponent [2, Section 4-4]. The z-transverse field of any such mode 

has the distribution 

±Y z 
E      = e    "    e 

±Y  z 
H      = + riezxe+Hy 
-ti n —      -n y — 

(106) 

where 

e    = 

E      =     < 
n 

- sm  (- x)  cos   (-r- y)  y 
ab a b — 

1 n = 0 

2 n > 1 

(107) 

and 

'0 

n (108) 

'.■/ 

(M)2 + (1)2 _ ^2   ^ 
D a 

The modal expansions in Sections 1, 2, and 4 are in terms of 

TE and TM to z modes. However, any other complete set of modes can 

be utilized. Only, then, the appropriate modal characteristic ad- 

mittances have to be used in (3), while everything else remains un- 

changed. Thus, for the problem of capacitive windows, a set of TEj^^ 

to x modes is clearly the natural choice, and (2) and (3) are to be 

replaced by (108). 
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The total z-transverse field has only a y-component of elec- 

71" 
trie field that varies as sin (— x) along the x-axis.  It then follows 

a 

from (5) that each M has only an x-component that varies as sin (—x): 

M = sm (— x) M (y) x 
—        a — 

on W (109) 

The H component in (106) does not therefore figure in the analysis. 

The generalized network representation of the window is given 

by (96) and depicted in Figure 5.  Here, however, Y is the p by p 

block matrix whose iimth block is the matrix 

^ ii^ £ m 
■^ P xp 

= [ y n   sin (— x') M.' e ds'   e sin (—x)M.dsl I    m 

W W 
(110) 

and I is the p segment vector whose fcth segment is the vector 

p xi 

71 
sin (— x) M. e-ds] „ 

I p Xl 
(111) 

as can readily be verified by following steps similar to those in 

Section 6. 

The scattering matrix is analogously given by 

0 
d' 
0 

S = (112) 
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where 

P-^  .m 
aQ = a^ = 1 - 1  I    V":        %   ^^^   (^  X) M"' ds        (113) 

m=l j=l -^ l^m 

bg = d(^ = 1 + aQ = 1 + a(^. (114) 

Like that of the inductive windows, the scattering matrix of the 

capacitive windows is both symmetric and unitary.  The second terra 

in the left-hand side of (82) now account for the reactive power due 

to TE,  to X, n > 1, modes. 
In 

8.  The Impedance Matrix of the Windows 

Let TE^„ to z modes of arbitrary amplitudes c^ and c„ be inci- 

dent on the windows (inductive or capacitive) from the left and from 

the right respectively.  Far from the windows, only the same mode can 

exist. 

Let V and v be, respectively, the amplitudes of the E com- 

ponent far to the left and to the right of the windows referred to 

the z=0 plane.  It then follows from (1), (43), and (99) for the in- 

ductive windows and (112) for the capacitive ones that 

Vj^ = (1 + S^p c^ + Sj^2 ^^2 ^^^^^ 

^2 = ^21 ^1 + (1 + ^22^ ^2 ^^^^^ 

where S.. (i,j e {1, 2}) is the ijth element of the scattering 

matrix in (99) or (112) .  The choice of z=0 as a reference plane is 

only a matter of convenience.  In matrix form, (115) and (116) become 
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V = (U + S) c . (117) 

In (X17) 

V = 

c 

(118) 

Similarly, let i^ and i^, be, respectively, the amplitudes of 

the H component far to the left and to the right of the windows 

extrapolated back to the z=0 plane.  Then 

- C^^i^ = (1 - S^^) c^ ~ S^2 ^2 

40^2 = - ^21 ^1 + ^1 - ^22^ ^^2 

(119) 

(120) 

In matrix form, (119) and (120) become 

^^Q 1 = (U - S) c (121) 

where C,       is the characteristic Impedance of the dominant mode. 

and 

1 = 

-1-, 

(122) 

To relate to network theory, let (v , - i^) and (v.. 12) be 

the complex voltage current pairs at the terminals of a two-port 
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network [10, Section 4-5]. Then 

V = Z 1 (123) 

where Z Is the network impedance matrix.  From (117) and (121), Z 

is readily found as 

Z = ?^Q (U + S)(U - S) 
-1 

(124) 

Since S is symmetric, so is Z.  Furthermore, since 

z = CJ^Q(U + s)(u - s)"-^ = ^10^^^^ "^ s)(s"s - S) ^ 

= C;^Q(S" + U)(s" - U) ^ 

= - z" (125) 

the elements of Z are pure imaginary. Finally, using (99), (102), 

and (103), or (112), (113), and (114), in (124), it becomes 

X      X 

Z = j 

jX = - C 

X      X 

1 + S^^ 

10  2S 
11 

(126) 

as can easily be verified by carrying out the matrix inversiof^ and 

multiplication there. 
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9.  The Equivalent Network of the Windows 

The effect of the windows on tVie dominant waveguide mode is 

described by the windows' impedance matrix Z.  Such a representation 

can be realized in the form of a two-port T-network (10, Section 4-5]. 

However, because of (126), the equivalent network is merely a shunt 

reactive element. . 

The higher order modes excited are evanescent, and are there- 

fore the cause for a localized energy close to the windows.  In view 

of (3)and (88), the energy stored close to the inductive windows is 

predominantly magnetic, whereas that stored close to the capacitive 

windows, in view of (108), is predominantly electric.  The shunt ele- 

ment in the equivalent network is therefore an Inductor for the induc- 

tive windows, and a capacitor for the capacitive windows, as can be 

seen in Figure 7.  There 

JX = 

'10  2a^ 

1 + a 
 Q 

=10  2aQ 

for inductive windows 

(127) 

for capacitive windows. 

10.  Concluding Remarks 

In this chapter, the system of multiple apertures of arbi- 

trary shape in the transverse plane between two cylindrical wave- 

guides has been considered.  The analysis is based on the generalized 

formulation for aperture problems [11]. 



z=0 
(b) 

z = 0 

Figure 7.  The equivalent network (a) for the inductive 

windows (b) for the capacitive windows. 
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mi 
^ -]x "z C, 
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For a multi-mode incident field, a representation of the 

system of apertures in terms of two generalized networks in parallel 

with current sources is obtained.  This representation obeys the two 

basic network laws: the conservation of complex power law and the 

reciprocity law.  Furthermore, each generalized network depends on 

the modes of only one waveguide.  Thus, for a given collection of 

apertures, different waveguides can be considered one at a time. 

The generalized network representation can then be obtained for any 

required combination. 

The scattering matrix of the apertures is then deduced from 

the generalized network representation.  Although the aperture- 

waveguide structure is both reciprocal and lossless, the scattering 

matrix is neither symmetric nor unitary.  This is because of the 

different characteristic admittances of the modes, and the con- 

sideration of evanescent modes.  The scattering matrix can be made 

symmetric by using a different mode normalization from (4), but no 

such normalization can make the scattering matrix unitary if eva- 

nescent modes are present.  A detailed discussion of this point is 

given in [12].  Since the scattering submatrices are expressed in 

terms of the generalized networks, given a set of apertures, the 

scattering matrix for a combination of two waveguides can be ob- 

tained by combining the generalized network for one waveguide with 

that of the other. 

Inductive and capacitive windows in a rectangular waveguide 

are then considered as special cases of the general problem.  The 
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windows scattering matrix, since it involves only the dominant 

waveguide mode, a propagating mode, is both symmetric and unitary. 

The windows impedance matrix is then obtained, and readily realized 

as a shunt reactive element.  Other problems of interest that can 

be worked out as special cases are those of inductive and capaci- 

tive windows in a rectangular waveguide loaded with different 

dielectrics on both sides of the windows, and of coupling through 

small apertures.  The latter is discussed in a more general setting 

using related methods in [13]. 

The analysis in this chapter is basically theoretical, and 

is presented so that all the results and different relationships 

are clearly seen.  Results that relate the present procedure to 

the mode matching and conservation of complex power techniques are 

given in [14]. 
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Chapter 3 

MULTIPLE INDUCTIVE POSTS IN A 

RECTANGULAR WAVEGUIDE 

Consider a system of posts P , P ,...,P located close to 

each other in a rectangular waveguide.  These posts are assumed 

perfectly conducting, of arbitrary shape and thickness, and uniform 

along the narrow side of the waveguide, i.e., of the inductive type. 

The medium filling the waveguide is assumed linear, homogeneous, 

isotropic, and dissipation free, and is therefore characterized by 

the real scalar permittivity e and the real scalar permeability \i. 

The problem considered is depicted in Figure 1. 

1.  Preliminary Considerations 

Let a TE  to z mode of unit amplitude be incident on the 

posts from the left.  This mode has the field distribution 

E = sin (— x) e 
y     a 

i   "^1        TT      "^1^ 
H = -;  sin (— x) e 
X  jojy     a 

-Y-, z 
,T1   -TT     .TT ,   '1 
H = -:  cos (— x) e 
z  jcoya    a 

(1) 

where 

. 2TT  .    [ 

2Tr 

2       ,^,21 

a) 
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•0 

z = 0 

Figure 1.  p inductive posts in a rectangular waveguide. 
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In (2), K is the wave number of the waveguide medium, and A is its 

wave length.  Furthermore, it is assumed that a < X < 2a and 2b < A 

so that only the dominant mode can propagate in the waveguide. 

Since each post is uniform along the y-axis, and since the 

exciting mode has no y-component of magnetic field, neither does the 

scattered field.  That is, the scattered field is TM to y, and can 

therefore be derived from a magnetic vector potential A having only 

a y-component ^   [2, Section 8-7]: 

A = (f)^  . (3) 

The scattered field is given in terms of (p  by 

E^ = -^ V X V X d) y 

H^ = V X (})^ 

while (p  itself satisfies 

(4) 

(V^ + K^) 4) = 0 . 

Expanding (4) in rectangular coordinates, the components of the 

scattered field are found to be 

.2 ■» 

(5) 

E" =-i-~i- 
X  joje 3y3x 4> 

E  = -.  (   + K )( 
y  l(^>e .   2    ^ 3y 

1   ^2 
E" = ^  ^   ^ 
z  joJE 3y9z 

X      dZ 

H^ = 0 

Z   dx 

(6) 
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Furthermore, since each post is uniform along the y-axis, | 

and since the exciting mode has only a y-component of electric field 

that does not vary with y, so does the scattered field.  It then 

follows from (6) that cj) is also independent of y.  The only components 

of the scattered field are now given by 

Ey = - jwy (}) (x,z) 

H^ - - -|- (j) Cx,z) 
X     dz  ^ 

H =  -5- <() (x,z). 
Z     dx 

(7) 

The total field, incident plus scattered, must have zero 

tangential electric field at the waveguide walls.  The incident 

field is a free waveguide mode, and does therefore have zero elec- 

tric field tangent to the walls.  The scattered field must then have 

zero tangential electric field at the walls.  This is readily accom- 

plished by setting 

4>(x,z) = 0,  x = 0, a, and all y and z. (8) 

The boundary conditions (8), once satisfied for any value of y, are 

clearly satisfied for all values of y.  Thus, the problem is basi- 

cally a two-dimensional scalar one that can entirely be worked out 

in some y=constant plane within the waveguide. 

In the next section, the Green's function for the TM  to y 
nO 

modes in a rectangular waveguide is obtained.  This is then used 

to determined (}>. 
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2.  The Green's Function for TM  to y Modes in a Rectangular _______ . __    ^Q 

Waveguide 

Consider a uniform electric current filament J directed 

across the waveguide parallel to the y-axis and located at (x', z') 

as shown in Figure 2. 

Since J is directed along the y-axis, the field produced 

must have only a y-component of electric field and no y-component 

of magnetic field.  Furthermore, since J is uniform along the y- 

axis, so must be E .  This can readily be established, for instance, 

by the reciprocity theorem [2, Section 3-8].  A magnetic vector 

potential having only a y-component (}), proportional to E , as is 

seen in Section 1, can then be used to derive all field components. 

Only TM Q to y (TE ^ to z) modes can be excited in the 

waveguide, since these are the only modes having only an E com- 

ponent that does not vary with y and no H component [2, Sections 

3-4,4].  The potential function (j) due to the filament, relabeled G, 

is therefore referred to as the Green's function for TM Q to y 

(TE „ to z) modes in a rectangular waveguide.  Below, G is found as 

a series of these modes. 

The wave equation satisfied by G, for each y, is 

2    2 
(-^ + ^ + K^) G(x,z) = - 6(x-x') 6(z-z') (9) 
dx dz ■ 

subject to the boundary conditions 

G(x,z) =0,   X = 0,a,  and all z. (10) 



5Q 

J = 8(x-x')8 (z-z')y 

(X',2') 

Figure 2.  An electric current filament J^ in a recgangular 

waveguide parallel to the y-axis. 
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In (10), 6 is the Dirac delta function.  Multiplying throughout 

(9) by sin (— x), then integrating over x from 0 to a, it becomes 
3- 

(-4+-' - (-)')' 
^"^ 0 

mr 
G(x,z) sin (— x) dx 

,nTT 
= - sin (— x') 6(z-z') (U) 

Put 

G (z) = 
n 

G(x,z) sin (— x) dx 
a 

n = 1,2, • •  » (12) 

n  .y  a 
.2   2 
)  - K 

The one-dimensional wave equation (11) then becomes 

(-d_^ _ Y2) G (z) = - sin (— x') 6(z-z') 
dz^   "  " 

CIS) 

For the solution of (13) to represent waves traveling away 

from the filament, G must be of the form 
n 

G (z) = ^ 
n 

A e 
n 
-\^ 

B  e 
n 

Y z n 

z > z' 

z < z' 

(X4) 

where A and B are constants to be determined.  Since G is pro'- 
n     n / 

portional to E , it is continuous across the filament at z=z' 
y 

[2, Section 1-14], and so is G .  Thus 
n 

-Y^z' Y„z' n „   n 
A e -Be    = 0 , 
n n (15) 
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Furthermore, integrating (13) over z from z'-A to z'+A, then let- 

ting A go to zero, it becomes 

t <^n'»> 
+ 

- sm (:— X ) 
a (16) 

That  is, -— G    is  discontinuous at  z =  z'  by  the amount -  ain   (—x'). 
dz    n a 

Thus 

-y  z' Y  2' 
AYe'^     +BYe"       =    sin   (— x') 

n n n'n a (17) 

Solving (15) and (17) simultaneously, A and B are found 
n n 

to  be 

Y  z' 
A     -     1       -      /nTT     ,.      'n 

\ - IT "^'^ ^T ^ ^ ^ 
n 

(18) 

— Y   2 ' 

B^ - ~ sin   (- X  )   e 
n 

(19) 

Combining   (18)   and   (19)   with   (14),   G    becones 
n 

T -Y     z-z' 
n    I    \ 1 .        /HTT        ,- 'n' ' ,     „ G   (z)   = -r—- am   (— x')   e ,       n=l,2,...   . 

n ^Y a 
n 

(20) 

By Fourier theory [15, Section 43 ] , (12) can be inverted as 

-Y Iz-z' I 
-,  0° s m (— X ) s in (— X') e 

G(x,z|x',z') = - y   ^    ^  
'  '     a ^^ Y 

n=l ' n 
(21) 

Clearly, G satisfies the boundary conditions (10), 
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3.  Basic Formulation 

Let (^ , H ) be Incident while all the posts are absent, 

and (J|(J[), H(J.)) be the field produced by an electric current 

I P I 
of density J[ = \_J  J^ , where J^ is the current on P , while all the 

m=l 

posts are absent.  By the uniqueness theorem [2, Section 3-3], 

(E^ + E(J), H^ + H(J)) is identical with the original field 

whenever 

n™ X (E^ + E(J)) = 0   on P" . (22) 

In (.22), n  is the outward unit vector normal to P^ . (M(J),  ^(J)) 

must then have the field distribution (7).  Since 

m 
n X (H(J) ) = j"^ on P 

v=0 
- I(J)    ) = 1 on P (23) 

v=0. 

,,       ,    m ^   „m  .,m ,     , 
where V is the distance along n  from P , J^ has only a y-component 

that does not vary with y: 

j" = J™(x,z) Z . (24) 

As is pointed out in Section 1, the problem is a two- 

dimensional scalar one that can be worked out in some y=constant 

plane within the waveguide.  Thus, all source and field points are, 

hereafter, assumed located in any such plane. 

By definition, G(x,z | x', z ' )_y^ is the magnetic vector poten- 

tial produced at any point (x,z) by a unit electric current fila- 

ment in the y-direction located at (x',z').  By superposition, then. 



m 

J_  produces at (x,z) the magnetic vector potential c}) ^, where 

4)(x,z) = 
^m 
J (x',z') G(x,z|x',z') dt' 

m=l im 

dt' =  /(dx')^ + (dz')^ 

(25) 

In (25), G is given by (21), and primed and unprimed coordinates 

denote, respectively, source and field points. 

Since G(x,z|x',z') is a solution of the homogeneous wave 

equation (5) for all (x,z) / (x',z'), so is (j).  Furthermore, (J) satis- 

fies the boundary conditions (8) by virtue of (10).  Thus (j), and 

consequently the complete field solution, can be found once all J' 

are known.  Using (1), (7), and (25), (22) becomes 

^m 

sin (-^ x) e   - juy I j"^(x',z') G(x,z|x',z' dt' = 0, 
m=l /,m 

(x,z) e C ,  1 < £ < p (26) 

which is an integral equation for J^. 

The higher order (n > 1) modes are evanescent, i.e., decay 

exponentially with distance from the posts.  Thus, at sufficiently 

large distances, only the dominant (n = 1) mode can exist in the 

waveguide.  The reflection coefficient of the dominant mode is 

readily found from (7), (21), and (25) as 

jwy 
ay 

1 m=l ,in 

-Y z' 
j'"(x',z') sin (- x') e ^       dt' (27) 



The transmission coefficient of the dominant mode is then 

5t- 

T = 1 - 
ay 

1 m=l i m 
J^(x',z')   sin (- x') e ^  dt' (28) 

4.  The Scattering Matrix 

Following Montgomery et al. [10, Section 5-14], the scatter- 

ing matrix of the posts is defined as    ■ 

S = 

11 

21 

12 

22 

(29) 

In (29), S  and S  are, respectively, the amplitudes of the dominant 

mode reflected to the left and transmitted to the right of the posts 

due to an incident TE, „ to z  mode of unit amplitude from the left. Con- 

sequently, S^^ and S^ are given by (27) and (28), respectively. 

Similarly, S  and S „ are, respectively, the reflection 

and transmission coefficients of a TE „ to z mode of unit amplitude 

incident on the posts from the right.  This mode has the field dis- 

tribution 

E = Sin (— x) e 
. • y     a 

Y 
T,i    1 .  /TT  \ E = -:— Sin (— x) e 
X  jLoy a 

Yi^ 

„1    -TT        ,TT  , 
H = -;  cos (— x) e 
z  juiya     a 

Y^z 

(30) 
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The previous analysis carries through in this case.  Thus, 

the scattered field is given by (7) and (25),  but with 

-\3 ,m 
J^' = V_y J_'    . now replacing J_  in (25), determined by solving the 

in=l 
integral equation 

sin (— x) e 
a 

Y-L^ 
ja))J 

m=l 
J' (x',z') G(x,z|x',z') dt' = 0, 

m 

i 
(x,z) e C ,   1 < £ < p (31) 

rather than (26).  It then follows from (7), (21), and (25) that 

S„ = -if^ I  f J'"(x'.z') sin (Jx-) e'^l'' dt' 
'1 m=l l^m 

12      ay 

p 
mi  y 

1 m=l m 

(32) 

J''"(x',z') sin (- x') e  ^  dt' .   (33) 
a 

is 

The scattering matrix is both symmetric and unitary.  That 

S = S 

ss" = s"s = U 

(34) 

where T and H denote, respectively, matrix transpose and Hermitian, 

and U is the identity matrix. 

11       2  2 
Let (jE , H ) and (E , H ) be the z-transverse fields in the 

waveguide, sufficiently far from the posts, due to TE  to z modes 

of arbitrary amplitudes c  and c  incident from the left and  from 

the right of the posts, respectively.  It then follows from (1), (7), 

(21), (25), (27), (28), (30), (32), and (33) that 
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-Y,z Yi^ 

E  =  < 

c (e    + S  e  ) sin (- x) ^ 

If      1 

z « 0 

z » 0 

H = < 

-y^z Y^z ^ 
-n-, c^ (e    - S,i e  ) sin (-- x) x  z « 0 

i i        11 a   — 

E = 

-Y-i z 
-11,0 S  sm (- x) e    x 

1 1 21      a — 

YiZ IT       1 
^2^12 ^^^  ^a ^^ ^   - 

z >> 0 

z « 0 

(35) 

Y-i z       -Y-, z 
c^Ce   +^226   ) sin (f x) y    z » 0 

YiZ 
n., c S  sm (- x) e   x z « 0 

H = < 

n^c^Ce 
Y^z -Y-, z 

S„„ e   ) sin (- x) x  z » 0. 
22 a   — 

In (35) , ri^ is the characteristic admittance of the dominant waveguide 

mode: 

'^1  Ci  jt^y 
(36) 

Let W be the closed surface consisting of all metallic walls 

between the two waveguide cross sections at z = z^ and z   ,   for some 

z^ << 0 and z„ » 0, and these two cross sections.  The reciprocity 

theorem then states that 

1   2   2   1 
(E X H - E X H ) • n ds = 0 (37) 

W 



m 

where n is the outward unit vector normal to W.  Substituting (35) 

into (37), there then results 

abri-. c^S-. 2C„ = abri-, c-j^S2-j^C2 (38) 

whence 

^12  ^21 
(39) 

The scattering matrix is symmetric if and only if the whole structure 

is reciprocal. 

That S is unitary follows from conservation of power con- 

siderations.  Let the two dominant modes be simultaneously incident 

on the posts from the left and from the right.  The complex power 

scattered far to the left and to the right of the posts is basically 

^sc=f\^\''lhl-'^2h2\'^   1^1^21 + ^2^22!') (40) 

whereas that incident is given by 

ab   , I  12 , I  12. 
P.  =-^111 ( c   + c  ) 
in   2  i ' 1'     z 

(41) 

Since the structure is lossless, and since P^^ and P^^ are real, 

they must be equal.  Put 

Then 

or 

c = (42) 

ab   ^H-> 

S^S = U. 

— n-, c s s c (43) 

(44) 
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5.  The Impedance Matrix 

Let TE^  to z modes of arbitrary amplitudes C- and c„ be 

incident on the posts from the left and from the right, respectively. 

Let V, and v„ be, respectively, the amplitudes of the E com- 

ponent far to the left and to the right of the posts referred to the 

z = 0 plane.  It then follows from (35) that 

v^ = (1 + S.^^) c^ + S^2 ^^2 (45) 

^2 = ^21 -1 + (1 + ^22^ ^2 (46) 

The choice of z = 0 as a reference plane is only a matter of con- 

venience.  In matrix form, (45) and (46) become 

v = (U + S) c (47) 

where 

V = (48) 

Similarly, let i, and i„ be, respectively, the amplitudes 

of the H component far to the left and to the right of the posts 

extrapolated back to the z = 0 plane.  Then 

-^1^1 = (1 - ^11^ ^1 - 'l2'^2 
(49) 

^1^2 = - ^21^1 + ^^ - ^22^ "-l   ' 
(50) 

In matrix form, (49) and (50) become 

5^ i = (U - S) c (51) 



where 

60 

-1, 

1 = (52) 

To relate to network theory, let (v , - i^) and (v , i„) 

be the complex voltage-current pairs at the terminals of a two-part 

network [10, Section 5-2].  Then 

V = Z i (53) 

where Z is the network impedance matrix, 

is readily found as 

From (47) and (51), Z 

Z = ^^(U + S)(U - S) 
-1 (54) 

Since S is symmetric, so is Z.  Furthermore, since 

z = c^(u + s)(u - s) ^ = q (s"s + s)(s"s - S) ^ 

= c^ (s" + U)(s" - U) ^ 

= - z H (55) 

the elements of Z are pure imaginary.  Thus 

Z = j 

^11      ^12 

X 
21 

^12 " hv 

X 
22 

(56) 
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6.  The Equivalent Network 

The complete field solution is seldom needed.  Rather, the 

effect of the posts on the dominant waveguide mode is what must 

accurately be described.  From an engineering perspective, a de- 

scription in terms of a network of lumped elements is preferred. 

The effect of the posts on the dominant waveguide mode is 

fully described by the posts' impedance matrix Z.  Such a representa- 

tion can be realized in the form of a two-port T-network [10, Sec- 

tion 4-5] . 

The characteristic impedances of the TM „ to y modes are 
nO 

given by 

C^ = J   .        n > 1 
/.niT. 2   2 
/(-)  - K 

C 

(57) 

Since these modes are evanescent, the energy stored close to the 

posts, in view of (57), is predominantly magnetic.  This effect can 

suitably be represented by an inductor in the shunt arm of the net- 

work.  The elements in the series arms, however, are capacitors to 

account for the charge difference across the posts in the z direction. 

The equivalent network of the posts is shown in Figure 3. 



^2 

C, 

i(X„-X,j) 

 )\- 

1 ■t 

3ix 12 c 

z«0 2.0 

Figure 3.  The equivalent network of the posts. 
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7.  Solution of the Integral Equation 

The integral equation (26) can be put in the compact form 

Z"'(J"^) = V 
m=l 

Z (J ) = jwy J"(x',z') G(x,z x',z') dt' 
m 

-Yi z 
V = sin (— x) e 

a 
(x,z) e C , 1 < £ < p 

(58) 

An exact solution of (58) can rarely be obtained, and an approximate 

solution has then to be sought. 

„Tn ,       .    , 1     1    y m       r „m „m    „m i 
Let each C be approximated by a polygon 2,  = iS^,S„,...,S i 

q 

as shown in Figure 4, and put 

m 

J'"(x',z') -   \    -"^ ^"^ 
jii  ^  ^ 

111 111. ,   ,, 
I. J . (x ,z ) (59) 

In (59), I. are complex coefficients to be determined, whereas each 

£ J jj, 
J. is a real function that vanishes on all S. , . , but is otherwise 

2 ^ r 2 

unspecified.  Substituting (59) into (58), it becomes 

m= 

m 

' \     I™ Z"^(J" ) + r = V , 

(x,z) e sj. I  <  I <V,     1 1 i 1 q^ (60) 

where Z™(J^) is given by (48) except that the integration is taken 

over S™, and r is a residual term.  A Galerkin solution [4, Sec- 

tion 1-3] can be obtained by requiring that r be orthogonal to 

all j"' . 



u 

(x, ,z,  ) 

(xp.z7) 

Figure 4.  c" approximated by a polygon I   . 
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Define the inner product 

<A, B> =        A B dt . (61) 

i 
Taking the inner product of (60) with each J., and enforcing the 

Galerkin condition 

<r, J!^> = 0 ,    1 £ £ < p ,  1 1 i 1 q^ (62) 

there then results the system of equations 

111 

\ i"" <z'"(j"^), j^ = <v. jb 
n=l 1=1 J  J J   i 

l<£<p,l<i<q^. (63) 

In matrix form, (63) becomes 

Z I = V (6A) 

v?here Z is a p by p block matrix whose £mth block is the matrix 

2  = ['ij^ i    m= f'^j^^j^' V^ i    m ^^5> 
■J q xq       J  J       q ><q 

and I and V are p segment vectors whose mth and £th segments are 

the vectors 

I™ = [I™] (66) 

'   q^l 

V^ = [vj] ^      = [<V, JI>]   ^ (67) 
q xl q xl 

respectively. 
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The currents J given by (59), with the coefficients if 

determined from (65), form the Galerkin solution of (58). A Galerkin 

solution of (31) can be obtained in a similar manner.  Clearly, then, 

using the same J., the solution is given by (59), but with the coef- 

ficients now determined by solvjlng (64) with the right-hand side 

vector V conjugated. 

8.  Evaluation of the System of Equations 

The construction of Z in (64) constitutes a large portion 

of the work involved in the numerical solution. An efficient evalu- 

ation of the elements of Z is therefore necessary for the success of 

the solution. 

The ijth element of the £mth block of Z is given by 

z!;? = jojy   J!'(X,Z) dt   J™(x',z') G(x,2lx',z') dt' 

'      i'    " s- ' 
(68) 

,m 
where J. are so far unspecified.  A particularly simple choice for 

,m . 
J. IS 

J™(x',z') = 

1    (x',z') e S 
m 

(69) 

0    (x', z') e S . 
i i 
1 ^ j 

0 

which corresponds to a pulse expansion of J .  Z.. then becomes 

Z. . = J ojy dt I  G(x,z!x',z') dt' 

s!  s- 
1    3 

(70) 



6? 

Put 

R^.(x,z) G(x,z|x',z') dt',   (x,z) e  S, (71) 
,in 

By the first mean value theorem of integration [16, Section 7-18], 

£ 
there exists a point (x ,z ) e S. such that 

o  p     X 

r.^ni  .   ^ £ „£m,    V Z. . = jojy L. R/.(x ,z ) 
ij        1 ij  o o' (72) 

where 

(73) 

is the length of S.. 

.£m 
The evaluation of  Z..   is now completed by  integrating G 

,m 
over S..     Put 

J 

G(x   ,z   |x',z')   =   (G^  + G    + G  )(x   .z^lx'.z') o     o 0 i /       o     o (74) 

In   (74) 

GQ(X^,ZJX'.Z')   =J^ sin   ( — X  )   sm  (— x')e 
a    o 

nTTi , 
    Z   ""Z 1    V   1     .     /nTT      ^      .      .niT     ,.        a '   o 

GT (x   , z    X   , z  )  = —   )   — sm   (—' x  )   sm  (— x  ) 1^00 TT'^^n ao a n=l 

JIlz -z' 
GJX   ,Z   |X',Z')  = -  [-sin   (^ X  )   sin(^ x')  e    ^'   ° 

2    o    o' TT a    o a 

V        • /nil       N .      /mr     ,^ +     )     sm (— X  ) sm   (— X  ) 
^„ a     o a 

n=2 

 z  -z' Hi a'   o       '   n — z -z 
a I   o 

x(- 3n -)] 

(75) 
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YT = 2 
2    ,1T,2    . TT 

K  - (-)  = J - a      a 
,2a 2      •'To 

n 
,n7T. 2    2 
(-)   -   K 

JT 
a <f>' a n 

n > 2 

(76) 

The decomposition (74), therefore, amounts to expressing the dynamic 

Green's function G in terms of a dominant mode wave G , the cor- 

responding static Green's function G^, which can be obtained from 

(21) by setting K equal to zero, plus correction terms G„. 

The series defining G  is readily summed to give 

^      cosh(—|z -z'|) - cos — (x +x') 
G^(x ,zJx',z') =^log ( z-^ ^ )(77) 
loo' 4TT ./^l      il\ ^/     t\ cosn(— z -z  ) - cos— (x -x ) 

a o a  o 

where log denotes the natural logarithm.  The details of the summa- 

tion are given in Appendix A.  The series in G  is dominated by an 

exponentially convergent series of positive monotonlcally decreasing 

terms (see Appendix B), and can therefore be summed directly at a 

minimal cost. 

The integration of G can be carried out numerically, and 

for that purpose any quadrature rule can be used.  Thus 

'm 
G(x ,z x',z') dt' o  o' 

-2      I    \(% + ^l+ V^^'^ol 
k=l 

/I    .m,   m   /T    \i"_L   Tn^ 
(1 -Pi,)x. +Pi,x.^^, (1 -V^)z.  +PkZ.+i) (78) 



m 

In (78), N is tl^e order of the rule, q are its coefficients, 
K 

and p, determine the location of its abscissas. 

When evaluating the diagonal elements of Z, Z.., G offers 

a logarithmic singularity at (x ,z ) e S that requires particular 

attention.  In Appendix A, the singular part of G^ is found to be 

^Xs^^o'^ol^''^') = -i^l°8 (^J(^^-.f+i.^-zf).       (79) 

fat 

%K'^o\''''^'^  = ^S - ^Is^^'^o'^o'^''^'^ • ^^°> 

Then 

G(x ,z x'.z') dt' 

=  , Ss^^'^ol^''^'^ ^'' -^ f  (S-^lp-«^2>(^o'^l^''^'>^t 
s. s: 
1 i 

^i ' ^ 

(G^-H;^^-W^)(K^,ZJX\Z')  dt' . (81) 

1 

£    p 
Here, L is the distance between (x ,z ) and (x., z.).  The integral 

o  O        11 

on the right-hand side of (81) has no singularity at (x ,z ), and 

can therefore be evaluated through (78). 
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■4- 

The ith element of the £th segment of V is given by 

1 J 
s 
1 

J.(x,z) sin (- x)e    dt (82) 

which, upon using (69), becomes 

1 

.  ,1T ,  "^1^ dt.  ' (83) 
sm (— x) e 

S 
X 

The integration in (83) can be carried out exactly.  However, a 

point (x ,z ) exists such that 
*      o o 

—Y z 
V. = L. sin (- X ) e     . (84) 
XX     a o . . 

Actually, finding such points (x ,z ) and (x ,z ) is at least ■' o o       o  o 

as difficult as computing the integrals themselves.  For sufficiently 

small L., however, the mid-point of S. can replace these points while 

introducing only very little error.  The system of equations thus 

obtained, clearly, is one that results from enforcing the point match- 

ing condition 

r(x,z) = 0, 

X. ,, + X.  z  , + z 0 

(x,z) e {(-^±V--'    2  ') I 1 1 ^ 5 P. 1 1 i 1 q > 

(85) 

in (60) rather than the Galerkin condition (62). 

9. Numerical Results 

The solution procedure presented is readily translated into a 

computer program.  The elements of the scattering matrix and the 
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reactances of the equivalent T-network are basically the parameters 

to be computed. 

The scattering parameters, thanks to (59) and (69), are com- 

puted by 

11 

m 

if! \ I" 
"^1 m-l J-1  J m 

TT       '^1 
sin (— x') e 

a dt' 

\ 
2^    "^1 mil jii   J ^.., 

j 
m 

sin (— x') e    dt' 
a 

.m 
m 

sxn (— x') e    dt 
a 

m 
.m 

=^12 = ^ - if I  "^ 'j  , ■^"^      ^1 m=l j=l  ^  J 

J 

sm (— x') e 
a 

-Y^z' 
dt' 

(86) 

where I. and 11  are the solutions of (64) with right-hand side 
J     3 

vectors V and V , respectively.  The impedance matrix is then com- 

puted through (54).  In carrying out the integrations in (86), and 

also in (78) and (81), an eight-point Gauss-Radau quadrature rule 

[17] is used.  Table 1 shows the p, and q, of the rule. 

Because of the approximations involved in the solution, however, 

the scattering matrix need no longer be symmetric nor unitary.  To 

determine the impedance matrix, S,„ and S,^ are first replaced by 21 

their average 

av  2  12   Zl 
(87) 

The impedance matrix can then have a non-zero real part. 
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To test the solution, the computer program is run for a few 

selected problems.  In particular, the problems of the circular post, 

of the symmetrical thin window, and of the triple circular post are 

considered.  Some of the results obtained are plotted in Figures 5-9. 

In all the cases, the convergence for the inductive reactance 

is monotonic and from above, as can readily be  seen from Figures 6 

and 8.  The computed reactances are found to agree well with the data 

in the Waveguide Handbook (WGHB) [3], with only a few segments needed 

even for large posts. A complete assessment of the solution perform- 

ance should also consider the (Frobenius) norm of the real part of Z 

and the modulus of difference in transmission coefficients.  These 
_Q 

two numbers are computed in all program runs, and are usually 0(10 ). 

Perhaps the most interesting observation can be drawn by 

examining Figure 5 for the centered circular post. For large posts 

d ^h 1 
(— > 0.25), — 7r~ is no longer frequency independent as is the case 
a        L,^  2a 

with smaller posts (- < 0.25), but rather branches out.  Figure 9 
■^     a — 

for the symmetrical triple circular post displays yet another almost 

frequency independent characteristic.  This is not surprising, however, 

since this configuration cancels out the first six higher order modes 

[18, Section 5-1.3] . 

10.  Concluding Remarks 

The system of inductive posts in a rectangular waveguide, 

i.e., of all the metallic obstacles that are uniform along the narrow 

side of the waveguide, but are otherwise of arbitrary  shape 

and thickness, has been considered in this chapter. 
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x„  X PHYSICAL GEOMETRY 
X 

0.05 0.1 

Figure 5. Network reactances of the centered circular post.  The 

number of segments used is 24. 
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Figure 6.  The convergence behavior for the centered circular 

post (- = 1.2, ~ = 0.1). 
a       a 



X.   Xi -U 

PHYSICAL GEOMETRY 
X 

Figure 7.  Network reactance of the symmetrical thin window.  The 

number of segments per diaphragm is 24. 
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Figure 8.  The convergence behavior for the symmetrical thin 
a       d 

windows (~ = 0.8, — = 0.5) 
'        a 



Figure 9. Network reactances of the symmetrical triple post. The 

number of segments used for each post is 16. 
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A complete field analysia of the problem i:, tirsl. ^'ven.  From 

this analysis, the scatCeririi^ and impedance matri:-: representations of 

the system of posts fully describing Its effect on the dominant v/ave^- 

giiide mode are obtained.  Since the whole structure is both recipro- 

cal and lossless, the scattering and impedance matrices are symmetric 

and unitary, and symmetric and pure imagin.iry, respectively.  The 

latter is then realized in the form of a 'I'-network of reactive ele- 

ments .      ' '■ 

The reactances of some post c(jnf igurat ions are computed in 

Section 9, aud more results can be found in [19|.  In the actual 

computation, pulse expansions f)f the currents Induced on ti>e postsj 

are usp.d.  Although chosen primarily so as to render the procedure ■ ,. . 

economical, tlie choice is very natural, since pulses are instru- 

mental in tlie definition of integration |lfi. Chapter 10].  This ■ 

choice has proven very successful, nevertheless, as is evident by  ■■- 

tiie performance of tlie solution. 

The circular post problem w;:is first treated using the    . ,' 

Variational Method fl, Ctiapter 2], [2, Section 8-7].  The Vari- : -'  . 

atlonal Metiiod was also applied to solve the problems oi the, 

inductive thin and thick irises |9, Sections 8-4 and 8-51, and 

of an array o[ symmetric thick irises f23|.  Single and triple 

circular posts have been considered in (7|, |Bj, where many of  ; 

their characteristics have been discussed.  The present analysis, 

however, is quite general.  It can also become tlie first step   .,; _ Z 

in the solution of a system of dielectric posts in t:he inductive 

position in a rectangular waveguide.     ■-.■•: ■ ■ ' 



Appendix A 

Consider the function defined by the series 

80 

n=l 

sin(nn) sin(nTi')e 
-no 

0 = k - ^' 

(A.l) 

Since 

sin(nn) sln(nn') = -;r (cos n(n-n') - cos n(ntn')) 

iReCe'^"^'^-'^'^ - e-J"^^+'^'^ (A.2) 

(A.l) becomes 

00 ^ 

G3^4 Re( I    l,-(0+i(n-r^')) 
n=l 

I    ie-^^°-^J(^-^^'»). (A.3) 
n=l " 

In (A.2) and (A.3), Re(z) denotes the real part of z. 

Since 

GO 
1     v^    n II 
V^ =  y  z ,   z c C,  z  < 1 
1-Z     ^„ »  I  I 

n=0 (A.4) 

and the series in (A.4) converges uniformly for all z, |z| _< |z | < 1, 

a term by term integration can be carried out [20, Section 5-4], 

giving 

z 
dz _ Y 
1-z "  ^' n=0 

z  dz 

oo  2 
n+1 

- log (1-z ) =   I -Jr- =   I — 
°   n=0 "+^   n=l " 

n 
oo  2 

n 
(A.5) 
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In (A.5), log denotes the natural logarith.  Putting z equal to 

(a+j(n-n'))   , -(cf+j(n+r)')) . ,.  ., ,,   .  ^,    ,^ e and e m (A.5), then using the results 

in (A.3), G becomes 

G^=\  Re[log (~ ^ 
1 - e 

-(a+j(n+n')) 

-(a+j(n-n')) rrr)] (A. 6) 

Finally, since 

1 - e ■(o+j(n+n')) 

-(a+j(n-n')) 

2    a 2     2 
(e - cos(n+n')) + sin (n+n') 

o 2     2 
(e - cos(ri-n')) + sin (n-Tl') 

e  - 2 e cos(r]+r|') + 1 

e  - 2 e  cos(ri-n ) + 1 

cosh o - cos (n+n') 
cosh o - cos (r|-n') 

(A.7) 

G is given by 

1 1   ,cosh a 
GT = T log (     1  4  * cosh a 

cos(n+n')>. 
,1 \ -' - cos(n-n') 

(A. 8) 

As a tends to zero, G becomes 

p - 1 i^„ /I - cos(n+n')>, G. - y log (- ;; j-r-) 
1  4    1 - cos(n-n ) 

(A.9) 

For all (n',?^') in a small neighborhood of (n,C), the 

following approximation is valid: 
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Re[log (1 - e  '    '  "^      )] 

Re[iog (|^-.^'| + j(n-n'))] 

J =  log ( /(n-n')^ + (?-C')^) . (A.10) 

Thus, G exhibits a logarithmic singularity of the form (A.10) at 

(n'.5') = (ri,C).  '■ 
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Consider the series 

81 

G    =    J    a    sin(nn)   sin(nri') 
^ « II n=2 

a    = n 
e 

/ 

-6    C- n -C 
e- ^-^' 

n 

1  <  a <  2     . 3   = n 
2 

n    - 
2 a 

(B.l) 

Clearly 

IGJ   <     I     la   I   . 
n=2 

(B.2) 

Put 

a(t) 

3(t) 

-3(t) C-5'        -t C-C' 
e e 

TM 

■I 2 2 t    - 0^     , t >  2 

(B.3) 

T,/ X -B(t)z -tZ 
F(z,t)  = e -  e (B.4) 

Then 

a(t)  = F(z,t)   dz 

5-C' 

(B.5) 

Since  t  <   3(t)   for all  t  >  2,   then a(t)   >  0  for all  t  >  2,  and 

certainly  so  is  a   ,   n=2,3, 
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That {a } is a monotonically decreasing sequence follows 

from its positiveness.  Since, F and -f-  F are continuous for t > 2 
3t — 

and for all z j> |j;-^'|, and, furthermore, the integrals 

F(z,t) dz and   [   y- F(z,t) dz converge uniformly, then 

[21, Section 7-5] 

-h ^<'> = ~  F(z,t) dz 
at 

'X-V 

I   zt dz (( F(u,t) du)       (B.6) 
, J  ,      J 
|C-C'|      z 

with the help of (B.3) and (B.4).  Thus, ^ a(t) < 0 on [2, «). 
dt 

Consequently, a(t) is a monotonically decreasing function for all 

t ^ 2, and certainly so is a , n=2,3,... . 
oo 

Thus, G„ is dominated by  )  a , a series of positive 
2 ■'  '-  n n=2 

monotonically decreasing terms.   Since 

3^^^ > n ,      n = 2,3, ... (B.7) 

then 

^-^ni^'-^'l   -f^n+ll^-^'l 
a^ < ^ ^ ""       g  —,  n=2,3,... .     ^      (B.8) 

n n+1 

Consequently 

N.      -^2l^-^'l    -Vli^-^'l 

n=2  "      ^2 N+1 

whence 
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-6,1 W 

n=2 2 

since ———5  goes to zero as N goes to infinity.  The rate 

of convergence of G„ is therefore exponential. 

Put 

b = -j^ - -  ,        n = 2,3,... . (B.ll) 
n  p   n 

. n 

Then 

a  < b , n = 2,3,... . (B.12) 
n — n 

Consequently 

CO 00 '        ■ 

IGJ <  y a  <  y  b < -^ (B.13) 
' 2' — ^„  n — ^'„  n  3„ 

n=2     n=2      2 

which can be proven using a similar procedure.  G does therefore con- 

verge uniformly for all (n,C) and all (n',C')- 

All the above results can also be deduced from Figure B.l, 



b„-a„= THE DARKENED AREA 

a.tTHE HATCHED AREA 

e  n+i 

t-t' 

Figure B.l.  PictoriaJ illustration of the procedure in 

the Appendix. 
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Chapter 4 

MULTIPLE CAPACITIVE POSTS IN A 

RECTANGULAR WAVEGUIDE 

Consider a system of posts P , P ,..., P  located close to 

each other in a rectangular waveguide.  These posts are assumed per- 

fectly conducting, of arbitrary shape and thickness, and unifoinn 

along the broad side of the waveguide, i.e., of the capacitive type. 

The medium filling the waveguide is assumed linear, homogeneous, 

isotropic, and dissipation free, and is therefore characterized by 

the real scalar permittivity e  and the real scalar permeability p. 

The problem considered is depicted in Figure 1. 

1.  Preliminary Considerations 

Let a TE^„ to z mode of unit amplitude he incident on the 

posts from the left.  This mode has the field distribution 

sin (— x) e a 

„i   ^0  .  ,^ ,  ^0^ H = -;  sm (— x) e 
X  jtjjy    a 

-y z 
H = -:  cos (— x) e 
z  jcoya     a 

(1) 

where 
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1'  X 

0 
z = 0 

Figure 1.  p capacitive posts in a rectangular waveguide. 
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Yn = 2 
2Tr ■ip^ (1,2 

(2) 

K  = 
2Tr 

(Mf  ye 

In (2), K is the wave number of the waveguide medium, and ^ is its 

wave length.  Furthermore, it is assumed that a < A < 2a and 2b < A 

so that only the dominant mode can propagate in the waveguide. 

Since each post is uniform along the x-axis, and since the 

exciting mode has no x-component of electric field, neither does the 

scattered field.  That is, the scattered field is TE to x, and can 

therefore be derived from an electric vector potential I^ having only 

an x-component i|' [2, Section 8-7]; 

F = ijJX (3) 

The scattered field is given in terms of ijj by 

E  = - V X (|; X 

H^ = v^ V X V X ,h X 

while \l)  itself satisfies 

(4) 

(V^ + K^)i|; = 0 . (5) 

Expanding (4) in rectangular coordinates, the components of the 

scattered field are found to be 



m 

E = 0 

E = - 
8z 

E = 

H = 

H = 

H = 

3 , 

jojjj 9x3y 

.2 

z  jtoy 3x8z 

(6) 

Furthermore, since each post is uniform along the x-axis, 

and since the exciting mode has an x-component of magnetic field 

TT 
that varies as sin (— x), so does the scattered field.  It then 

a 

follow^ from (6) that ij; must contain sin (— x) as its X'-dependent 

factor.  Thus 

^  = sin (- x) ip(y,z) . (7) 

Substituting (7) into (5) and using (2), it becomes 

2    2 

9y 3z 
(8) 

The components of the scattered field are now given by 



n 

E'' = 0 
X 

E = - sm (— x) -r- iKy.z) 
y a   dz 

sin (- x) -r- ijj(y,z) 
a   dy 

— sxn (-X) i|;(y,z) 

H = -: cos (- x) —- tp(y,z) 
y  jojya     a   dy 

H = rr-— cos (— x) TT- I^CYIZ) 
z      j'jjya     a   3z 

(9) 

The total field, incident plus scattered, must have zero 

tangential electric field at the waveguide walls.  The Incident 

field is a free waveguide mode, and does therefore have zero elec- 

tric field tangent to the walls.  The scattered field must then have 

zero tangential electric field at the walls.  This is readily accom- 

plished by setting 

T— IKYJZ) = 0,   y = 0,b, and all x and z 
oy 

(10) 

which are the required boundary conditions on the scattered field. 

The boundary conditions (10), once satisfied for any value 

of X, are clearly satisfied for all values of x.  Thus, the problem 

is basically a two-dimensional scalar one that can entirely be worked 

out in some x=constant plane within the waveguide.  Considerable 



n 

simplification in the solution can result from choosing the x ■* ^ 

plane. In this plane, the only components of the scattered field 

are 

E = ^ij^(y,z) 

H = 'Jj(y.z) 

(11) 

whereas those of the incident field are 

E = e 
-^0^ 

H = :2o ■^0^ 

(12) 

Finally, an important fact can be established by realizing 

that the set of equations (8), (10), and (11) is the same as the set 

satisfied by the fields in a parallel plate transmission line, ex- 

cept for Yn replacing jK. That is, in order to solve any problem 

of capacitive posts in a rectangular waveguide, one need solve only 

the parallel plate transmission line problem which ha$ the same 

cross section, at the same time replacing jK by Yr,<  In the latter 

problem, the exciting field is a TE^ to x mode, again with Yrj re- 

placing jK. 

No further simplification is possible, but ijj is still to be 

determined. This can be accomplished with the help of the Green's 
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function for TE^  to x modes In a rectangular waveguide obtained in 

the next section. 

2.  The Green's Function for TE,  to x Modes in a Rectangular  3^n °—— 
Waveguide 

Consider a magnetic current filament M directed across the 

waveguide parallel to the x-axis and located at (y', z'). Further- 

more, M is assumed to vary as sin (— x) along the x-axis. Figure 2 

shows the situation considered. 

Since M is directed along the x-axis, the field produced 

must have an x-component of magnetic field and no x-component of 

electric field.  Furthermore, since M varies as sin (— x) along the 
— a 

X-axis, so does H .  This can readily be verified, for instance, 
X 

from the reciprocity theorem [2, Section 3-8].  An electric vector 

potential having only an x-component 'K proportional to H , as is 

seen in Section 1, can then be used to derive all field components. 

Only TE  to x modes can be excited in the waveguide, 

since these are the only modes having an H component that varies 

as sin (— x) and no E component [2, Section 4-4].  The potential 
3. X 

function tjj due to the filament, relabeled G, is therefore referred 

to as the Green's function for TE,  to x modes in a rectangular 
In 

waveguide.  Below, G is found as a series of these modes. 

Put 

G = sin (- x) G(y,z)  . (13) 
a 

G(y,z) then satisfies, for each x, the wave equation 
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M«sin(~x)8(y-y')8(z-z')^ 

t 
• (y',z') 

K-z' 

Figure 2. A magnetic current filament M in a rectangular 

waveguide parallel to the x-axis. 



95 

2    2 
(•^ + -^ - yh  G(y,z) = - 6(y-y') 6(z-z') 
3y   8z^   ^ 

(14) 

together with the boundary conditions 

3y 
G(y,z) = 0 ,   y = 0,b,  and all z. (15) 

In (14), 6 is the Dirac delta function.  Myltiplying both sides of 

^n'rr 
(14) by cos (— y), then integrating over y from 0 to b, it becomes 

/d    2   /n'Ts2. I  ^.  .     .nTT  . , 
(—2 ~ "^0 ~ ^~h^   ^ G(y,z) cos (— y) dy 
dz Jj 

cos (-;— y') 6(z-z' ) 
b 

(16) 

Put 
h 

,n7r 
G^(z) = I  G(y,z) cos (— y) dy ' 

/ -nTT, 2 ^  2 

,   n  = 0,1,2,.., .    (17) 

The one-dimensional wave equation (16) then becomes 

dz 

,n7T 
- cos (— y') 6(z-z') (18) 

For the solution of (18) to represent waves traveling away 

from the source, G must be of the form 
n 

G (z) = 
n 

A e 
n 

-\' 

B e 
n 

\^ 

z > z' 

z' > z 

(19) 



H 

where A and B are constants to be determined.  Since G is pro- 
n     n 

portional to H , it is continuous across the filament at z = z' 

[2,  Section 1-14], and so is G . Thus 

-y z'      Y z' 
Ae"  -Be"^  =0. (20) 
n n 

Furthermore, integrating (18) over z from z' - A to z' + A, then 

letting A go to zero, there then results 

dz n 
= - cos (^  y')  . (21) 

That is, -r- G    is discontinuous at z = z' by the amount -cos (-7—y') 
dz n b 

Thus 

-Y z'        y z 
n 

i + B Y n'n n n 
A„Y„ e '"  + B„Y„ e'""  = cos (~  y') • (22) 

Solving (20) and (22) simultaneously, A and B are found 
n     n 

to be 

"n  2Y ^°^ ^T^'^ ^'"' (2^> 
n 

-Y z' 
B =^ cos (^ y') e "   . (24) 
n  2Y      b n 

Combining (23) and (24) with (19), G becomes 

1 -Y |z-z I 
G (z) = ^ cos (IT y') e "     ,  n=0,l,2,... .    (25) 
n     zY      b 'n 

By Fourier theory [15, Section 43], (17) can be inverted as 



n 

G(y,z|y',z') = 
n=0 

-Y |z-z'| 
cos (-r- y) cos (-7- y') e 

b b 

2Y. 

(26) 

where 

£  = ' 
n 

n = 0 

n > 1 

(27) 

Clearly, G satisfies the boundary conditions (15). 

3.  Basic Formulation 

As is pointed out in Section 1, the problem is a two- 

dimensional scalar one that can entirely be worked out in the x = -^ 

plane within the waveguide.  Thus, all source and field points are, 

hereafter, assumed located in this plane.  The incident field is 

then given by (12), whereas that scattered from the posts is given 

by (11). 

Let (E , _H ) be incident while all the posts are absent, and 

(E(J), ji(J.)) be the field produced by an electric current of density 

J_ = \^  J^ , where J^ is the current on C , while all the posts are 
m=l ^ 

absent.  By the uniqueness theorem [2, Section 3-3], (E + E(J^), 

H + H(J_)) is identical with the original field whenever 

n" X (E^ + E(J)) = 0 on C 
m 

(28) 

In (28), n is the outward unit vector normal to C and tangent to 

the X = -r- plane.  (_E(J), H(J^)) must then have the field distribution 

(11).  Since 
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m n X (H(J) ) = j"   on C"        (29) 
v=0 

where V is the distance along n from C , and H(J) has only an x- 

component that does not vary with x, J_ has only an x-transverse 

component J that does not vary with x: 

J = J (y, z) _t = J (t) ^ . (30) 

In (30), t^    is the counterclockwise unit vector along C , and t is 

the distance along C  from an arbitrary, but fixed, point to (y,z), 

Consider the magnetic current distribution 

M'"= -»V X j^-Ct') &(v')   t^        one™.      -   (31) 

^0 .  : 

Since 

V'x(()_t =V'(})Xt  =^^())n  xt  =-^^ X      (32) 

for any function <^  independent of x, (31) becomes 

M'" = j^ j'"(f) ^ 6(v') X  one"'. (33) 

^0 

The collection v^ M^ produces a field identical with (^(J^), H(J^)) 
m=l 

[22].  By definition, G(y,z|y',z') x is the electric vector poten- 

tial produced at any point (y,z) by a unit magnetic current fila- 

ment in the x-direction located at (y', z').  Thus, by superposition, 

jj produces at (y,z) the electric vector potential ij'x , where 
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V2 

My..)=Jf ■rin 
J (y'.z') [ 

Yo '"^^ c m -V' 

dt' =  /(dy')^ + (dz')^ 

d ^ G(y,z|y'.z') ^ 6(v') dV]df 

(34) 
J 

In (34), G is given by (26) and (27), and primed and unprimed coordi- 

nates denote, respextively, source and field points. Whence 

2  ^, 
m 

j"* (y',z') -^ G(y,z|y',z') dt' (35) 

Since G(y,z|y',z') is a solution of the homogeneous wave equa- 

tion (8) for all (y,z) T^ (y',z'), so is ip.  Furthermore, ^  satisfies 

the boundary conditions (10)  by virtue of (15).  Thus, i|j, and con- 

sequently the complete field solution of the problem, can be found 

once all J are known.  Using (4), (12), and (35), (28) becomes 

/ X le'^o' ^ + JMi V X ( 

^0    "^=1   C 
m 

J'"(y',z') -^  G(y,z|y'.z') df)x] 

0 ,   (y,2) EC,  1 1 ii 1 P 

Since 

n x(Vx(j)x)=n. x(V())Xx)=n x  (-r- (p n    x x) 

(36) 

^^^ 
(37) 

(36) can be put in the form 



im 

sin(e(n ,j))  e -■^0^ 2m j r .2 
^'"(y'.^') ^T^G(y,z|y',z') dt' 

m 
3vav' 

= 0,   (y,z) EC,   1 1 ^ 1 P (38) 

which is an integral equation for J^.  In (38), G(n ,j) is the angle 

ri makes with the y-axis at (y,z). 

The higher order (n >^ 1) modes excited are evanescent, i.e., 

decay exponentially with distance from the posts.  Thus, at distances 

sufficiently far from the posts, only the dominant mode (n=0) can 

exist.  The reflection coefficient of the dominant mode is readily 

found from (11), (12), (26), (27), and (35) as 

r = 2mL-   y 
2^0^ m=l 

J (y ,z') sin (e(n ,^)) e -V 
dt' 

m 
(39) 

The transmission coefficient of the dominant mode is then 

T = 1 + 
2^0^ mil 

Y z 
j"(y',z') sin(e(n'",2')) e °  dt' 

m 
(40) 

4.  The Scattering Matrix 

Following Montgomery et al. [10, Section 5-14], the scatter- 

ing matrix of the posts is defined as 

S = 

11 12 

^21       ^22 

(41) 



IQl 

In (41), S^^ and S„, are, respectively, the amplitudes of the domi- 

nant mode reflected to the left and transmitted to the right of the 

posts due to an incident TE „ to z mode of unit amplitude from the 

left.  Consequently, S ^^ and S  are given by (39) and (40), respec- 

tively. 

Similarly, S „ and S „ are, respectively, the reflection and 

transmission coefficients of a TE „ to z mode of unit amplitude inci- 

dent on the posts from the right.  In the x = -r plane, this mode has 

the field distribution 

E = e 
y 

„i _ ^0  ^0^ 
H = -;— e 
X  jojy 

(42) 

The previous analysis carries through in this case.  Thus, 

the scattered field is given by (11) and (35), but with J^' = l^^ J^  , 
m=l 

now replacing J^ in (35), determined by solving the integral 

equation 

Y z       V     f 2 
sin (6(n\x)) e ° -^    I     \     j .^(y, ^^ .) _|_ G(y,2 |y • ,z.) dt' 

0 ,   (y.z) e C ,  I <  H < P (43) 

rather than (38).  It then follows from (11), (26), (27) and (35) 

that 
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= ML 
22 2^0^ m=l im 

Y z 
J'^'Cy'.z') sin (6(n"',x')) e °  dt'     (44) 

0 in=l ;! 
'12 

f ~Y z' 
J'^'Cy'.z') sin (e(n'",jjr')) e ° dt'  (45) 

m 

The scattering matrix is both symmetric and unitary.  That is 

S = S 

ss^ = s"s = U 

(46) 

where T and H denote matrix transpose and Hermitian, respectively, 

and U is the identity matrix. 

11       2  2 
Let (^ , H ) and (E , H ) be the z-transverse fields in the 

waveguide, sufficiently far from the posts, due to TE,„ to z modes 

of arbitrary amplitudes c  and c  incident from the left and from 

the right of the posts, respectively.  It then follows from (11), 

(12), (26), (27), (35), (39), (40), (42), (44), and (45) that 

E    =    < 

-^o" ^0^ 
''l ^^    "^ ^11 ""   ^ ^ 

^1 ^21 ^ 
-^0^ 

z << 0 

z >> 0 

H = 

-HQ ^1 (e  ^ - S^^ e  ) X      z « 0 

-HQ C^ S^^ e    X z >> 0 

(47) 
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E = 

YQ^ 
c^ (e   ^ ^22 ^   ^ ^ 

z « 0 

z » 0 

H = 

^0^ 

no c^ (e 
YQ^ -YQZ 

^22^   ) X 

z « 0 

z » 0 

In (.47), r\    is the characteristic admittance of the dominant wave- 

guide mode: 

^0  CQ  jtoy (48) 

Let W be the curve enclosing the surface area of the waveguide 

in the x = — plane between the z = z and z lines, for some z « 0 

and z_ >> 0.  The reciprocity theorem then states that 

(E"*" X H^ - E^ X H"*") • n dt = 0 (49) 

« 

where n is the outward unit vector normal to W and tangent to the 

X = ^ plane.  Substituting (47) into (49), there then results 

2b c^ S^2 ^^2 = 2b c^ S^^ c^ (50) 

whence 

^12 " ^21 (51) 

The scattering matrix is symmetric if and only if the whole structure 

is reciprocal. 
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That S is unitary follows from conservation of power con- 

siderations. Let the two dominant modes be simultaneously incident 

on the posts from the left and from the right.  The complex power 

scattered far to the left and to the right of the posts in the x = — 

plane is basically 

Psc = b^O ^1^1^11 -^^2^12!'+ I'^1^21-^'^2^22l'^ 
(52) 

whereas that incident is given by 

^in = ^'''0 ^l^ll'+ 1^2!'^ 
(53) 

Since the structure is lossless, and since P.  and P  are real, they 
m sc 

must be equal.     Put 

c (5A) 

Then 

briQ c c = briQ c s S c (55) 

or 

s"s = u 

5.  The Impedance Matrix 

Let TE  to z modes of arbitrary amplitudes c  and C- be 

Incident on the posts from the left and from the right, respectively, 

Let v, and v„ be, respectively, the amplitudes of the E 



component far to the left and to the right of the posts referred 

to the z = 0 plane.  It then follows from (47) that 

v^ = (1 + S^^) c^ + S^2 -2 (57) 

^2 = ^21 ^=1 + (1 + ^2^   -2   ' (58) 

The choice of z = 0 as a reference plane is only a matter of con- 

venience.  In matrix form (57) and (58) become 

V = (U + S) c (59) 

where 

V = 

2 

(60) 

Similarly, let i^ and i be, respectively, the amplitudes of 

the H component far to the left and to the right of the posts 

extrapolated back to the z = 0 plane.  Then 

-^0 ^1 = ^1 - ^11^ ^=1 - ^12 ^^2 (61) 

^0 ^2 = - ^21 ^1 + (1 - ^22^ ^^2 (62) 

In matrix form, (61) and (62) become 

^0^ 
(U - S) c (63) 

where 



1C6 

-i. 

X = (64) 

To relate to network theory, let (v , -i ) and (v , i ) be 

the complex voltage-current pairs at the terminals of a two-port 

network {10, Section 4-5].  Then 

V = Z 1 (65) 

where Z is the network impedance matrix.  From (59) and (63), Z is 

readily found as 

Z = CQ (U + S)(U - S)" (66) 

Since S is symmetric, so is Z.  Furthermore, since 

z = ^Q(U + s)(u - s) ^ = r,y(s"s + s)(s"s - s) ^ 

= CQ(S" + U)(s" - U) ^ 

= - Z 
H 

(67) 

the elements of Z are pure imaginary.  Thus 

Z = j 

^11      ^2 

^21      ^22 

^12 " ^21 

(68) 



im 

6.  The Equivalent Network 

The complete field is seldom needed.  Rather, the effect of 

the posts on the dominant waveguide mode is what must accurately be 

discribed.  From an engineering perspective, a description in terms 

of a network of lumped elements is preferred. 

The effect of the posts on the dominant waveguide mode is 

fully described by the impedance matrix Z.  Such a representation can 

be realized in the form of a two-port T-network [10, Section 4-5]. 

The characteristic impedances of the TE,  to x modes are 
In 

given by 

^ .,  ,  b      a -, 
C.    = - JCI^     o—■ —^      n > 1 n 2   ,Tr,2 — 

K      -    (-) 
a 

^ =   /f 

(69) 

Since these modes are evanescent, the energy stored close to the 

posts, in view of (69), is predominantly electric.  This effect can 

suitably be represented by a capacitor in the shunt arm of the net- 

work.  The elements in the series arms are also capacitors to account 

for the change difference across the posts in the z direction.  The 

equivalent network of the posts is shown in Figure 3. 

7.  Solution of the Intergal Equation 

The integral equation (38) can be written in compact form as 
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C, 

j\X||-X|2) JVX22   '^12' 

^h Hf 

jX 12 c. 

z = 0 z=0 

Figure 3.  The equivalent network of the posts, 
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I    Z^  (A = sin (6(/, Y.))  V 
in=l 

^0 c'" 

j'^Cy'.z") ^^G(y,z|y',z') dt' 

V=e^   ,   (y, z)£C,      ll^-lP 

(70) 

An exact solution of (70) can rarely be obtained and an approximate 

solution has then to be sought. 

Let each C  be approximated by a polygon I     =  {S , S ,..,,S  } 

as shown in Figure 4, and put 

,in 
J  (y',z') \    l"^ J"'(y'.z') . 

j=l .1 ^ 
(71) 

In (71), I. are complex coefficients to be determined, whereas each 

J. is a real function that vanishes on all S , ., but is otherwise 

unspecified.  Thus, 6(n , j)   is constant on S. : 

. m  ,   Q / ID  ,   „m        „m 
i(n , y) = 6(n,, y) = 6.     on S. (72) 

Substituting (71) and (72) Into (70), there then results 

m=l j=l 

m m, m,        .  ,„£. 
I. Z.(J.) + r = sm (8.) V , 
J  3  J 1 

(y,z) e s!^,  1 < £ < p, 1 < 1 < q^.     (73) 

-,ni 
The integrals in (73) are taken over S., and r is a residual term. 

A Galerkin solution [4, Section 1-3] can be obtained by requiring 



1X0 

(in  m > 
<y;m.^"m) 

ty,:,'^?..^ 

Figure 4.  C  approximated by a polygon )_ , 
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that r be orthogonal to all J.. 

Define the inner product 

<A, B> = I      A B  dt (74) 

£=1 • ■ 

where * denotes complex conjugate.  Taking the inner product of 

I 
(73) with each J. and enforcing the Galerkin condition 

<r, JS = 0     1 < £ < p ,  1 < i < q^ (75) 

it becomes       y 

I      )  <l"^ Z"" CJ"'). J!> = sin (ob <V, JS , 
m=l 3=1 J  J  J   ^        ^      * 

1<£<P,   l<i<q^. (76) 

The system of equations (76) can be put in the matrix form 

ZI=DV. (77) 

In (77), Z is a p by p block matrix whose £mth block is the matrix 

D is a p by p block diagonal matrix whose il£th block is the diagonal 

matrix 

°''= f^uJ £ £ = i-- (^i^^ £ £     . Y -     '   ^^^> 
q xq q xq 

and I and V are p segment vectors whose mth and £th segments are 

the vectors 
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V   = ivj] ^    = [<v, jj;>] ^ (81) 
q xl q xl 

respectively. 

The currents J  given by (71), with the coefficients 1. 

determined from (77), form the Galerkin solution of (70).  A galerkin 

solution of (43) can be obtained in a similar manner.  Clearly, then, 

using the same J., the solution is given by (71), but with coefficients 

now determined by solving (77) with the right-hand side vector V con- 

jugated 

8.  Evaluation of the System of Equations 

The construction of Z in (77) constitutes a large portion of 

the work involved in the numerical solution.  An efficient evaluation 

of the elements of Z is therefore necessary for its success. 

The ijth element of the £mth block Is given by 

?.m ^ jojy 
Ij    2 

Y 

^ ,i ^ 
,2 

'^i' ^y''^'^ 8^' G(y.zly'.z') dt- 
m -^ 

J. (y,z) dt 
h ^■ 

0 S. ST 
^ ^ (82) 

where J. are so far unspecified.  A particularly simple choice for 

J. IS 



XX3 

3/ Jj(y',z') = 1 

m 
1   (y'.z') e S 

0   (y'.2')e s!; - 5" 

(83) 

which corresponds to a pulse expansion of J . Z  then becomes 

,£in _ jojy 

"   Y,^ 
dt 

m 
3v9v j  G(y,ziy',z') dt' . (84) 

OS.   s 
1   J 

Put 

R^j(y.z) = Sv3v 
^ r  G(y.z|y',z') dt',   (y,z) £ s/ (85) 

By the first mean value theorem of integration [16, Section 7-18], 

there exists a point (y ,z ) e S. such that 

-hf L. R. . (y ,z ) 
2  1  11   o o 

(86) 

where 

h y '"1. i+l yj)' + (4^1 £.2 

is the length of 8 

(87) 

Put 

G(y,z|y',z') = (0^ + G^ + G^)(y,z|y',z') (88) 

In (88) 
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GpCy.zly'.z') 

Gj^ (y, z I y' , z ' ) 

G2(y,z|y',z') 

I       V      1 ^nTT nTT       , 
= ^    L    - cos   (-r- y)   cos   C-r- y') 

nffi 
z-z' 

IT     '-^   n 
n=l 

oo 
1     r. ,mT    V ,n7T     ,. 
-    )     cos   (-:- y)   COS   (-r- y  ) 

n=i 

^1        lift "^1        I I -  —   z-z'    P  r-   Z-z' 
b                n               b 

X   (£__^ 3^ ) 

n 
n 

(89) 

Yn   =   3    /    K (^)2 
a 

.   IT   /   /2b,2        .b.2 
J   b /   ^X>     -   ^a^ J b f^o 

/,nTT.2   ,     2       IT 2 IT    „ 

^0 = b  ^n 

(90) 

The decomposition (88) therefore amounts to expressing the dynamic 

Green's function G in terms of a dominant mode wave G , the corre- 

sponding static Green's function G , which can be obtained from (26) 

by dropping the n = 0 term and setting Yp equal to zero in the re- 

maining terms, plus a correction series G . 

The series defining G  is readily summed to give 

G^(y,z|y',z') = ^l^-z' 

- "2— log [cosh (-1 z-z'I) - cos (-g- (y+y'))) 

X (cosh(J|z-z'|) - cos(J (y-y')))]  (91) 
b' b 
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where log denotes the natural logarithm.  The details of the suramatlon 

are given in Appendix A.  The series in G is dominated by an exponen- 

tially convergent series of positive monotonically decreasing terms, as 

is shown in Appendix B of Chapter 3, and can therefore be summed di- 

rectly at a minimal cost. 

The normal derivatives of G at (y ,z ) e S., and at any 
o  o     1 

(y',z') e S. can be computed numerically through finite differences. 

Thus, for all (£,1) 4   (m,j), 

,2 ,   M  M' 
3 

k=l k =i 3v3v' 
K—-L  K. —4- 

(92) 

£ 
Here, (y ,z ) are the pivot points along the normal to S. at (y ,z ), 

and b, are the coefficients and c is the multiplier factor of the Mth 
k 

difference formula.  The parameters for the M'th difference formula, 

(y',,z',), b',, and c', are similarly defined. 

When dealing with the diagonal elements of Z,((£,i) = (m,j)), 

G^ offers a logarithmic singularity at (y ,z ) that requires particular 

attention.  In Appendix A, the singular part of G  is found to be 

G, (y ,z |y',z') = fi log[2(cosh(J (z -z')) 
Is o  o'        4TT bo 

- cos (J (y -y')))] .      (93) 
b  o 

Put 

S^^o'^o'y''^'^ = ^^1 -^is^^^o'^ol^'''^') • (^^> 
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Then 

2 J2e^ 
^JGiy,^\y^,^n  =^ (J) Re[-^ 

j26. 

(-) Re[ 5—r-r-] 8b ^b^    . , 2 ,TT o. 

+ 
MM' 

where 

(95) 

a = (z^-z') + j(y^-y') • (96) 

The truth of the first term on the right-hand side of (95) can readily 

be verified in a straightforward manner by carrying out the normal 

differentiations, and Re(z) denotes the real part of z. 
2 

The evaluation of Z. . is now completed by integrating -;r"x—r G 
Ij dVoV 

over S., and for that purpose any quadrature rule can be used.  Thus, 

0    .   L. L.  N 
£m _ 2m.      1 .1  V  n .    ,-. 
Ij ~ v2    2   ^, "^u 

YQ       U=1 

M  M' 

k=l k =1 
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In (97), (yV ,,z', ,) are the pivot points of the M' difference formula 
uk  uk 

along the normal to S. at ((1-p )y. + p y. .i> (1-p )z. + p z,,,), and "^ J u  j   '^u-^j+l     ^U  J   '^u j+1 

q  are the coefficients and p  determine the location of the abscissas 
u u 

of the Nth integration rule.  The diagonal elements of Z are then given 

by 

ii    2  i  ii 
^0 

L!" N     ,   M  M' 
+ Y I \^^,\ j^Vk'(^o^ip+^2>(\'\iyuk"^:k'>3i 

u=l       k=l k =i 

(98) 

where .^^H 

IX  8D b 
Re[--^^-—-] dt' . (99) 

1 

The singularity in the integrand at (y ,z ) is not integrable.  However, 

the limit of the integral as (y,z) approaches (y ,z ) along the normal 

at (v ,z ), not its value at (y ,z ), is what is actually needed.  The 
^o o o  o 

integral is elementary, nevertheless, and is readily evaluated to give 

on  1   J9^     L - L je!"       J   iQ^ 
G^^ = Zl Re[e  ^ (coth(J -^  e  ^) + coth (^ -^ e  ^))] (100) 
11   4b D    2 D z 

where L is the distance from (y., z ) to (y^, z^). 

-»• 
The ith element of the £th segment of V is given by 
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jJ^Cy.z) e ° dt (101) 

which, upon using (83), becomes 

e ^ dt . (102) 

The integration in (102) can be carried out exactly.  However, there 

exists a point (y ,z ) such that 

v! = L!- e ° ° . (103) 
1   1 

Actually, finding such points (y ,z ) and (y ,z ) is at 

least as difficult as computing the integrals themselves.  For suf- 

ficiently small L., however, the mid-point of S. can replace these 

points while introducing only very little error.  The system of equa- 

tions thus obtained, clearly, is one that results from enforcing the 

point matching condition 

r(y,z) = 0 . 

1    -, + y.  z   + z. 

(y.z) e {(-^^~ -> 2      ''   |1 1 ^ - P' 1 1 i 1 q''^ 

(104) 

in (73), rather than the Galerkin condition (75). 

9.  Numerical Results 

The solution procedure presented is readily translated into a 

computer program.  The elements of the scattering matrix and the 
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reactances of the equivalent T- or Il-network are basically the 

parameters to be computed. 

The scattering parameters, thanks to (71), (72), and (83), are 

computed by 

2i^\i 

m 

'11  2Y3    . 
0 m=l j=l 

m  . , m 
sin(0.) 

1     1 i 

-YQ^ 
dt' 

J 

S  = 1 + J^  . 
^21    ^ 2Y^b ^f 

m 

0 m=l j=l 

m  . ,„m, 
sin(fc).) 

J     J  J 
e ^  dt' 

in 

m 

'^'^  ^0 m=l j=l  -^      -J J^m 

Tn^ 
f,  \ i:" sin(e"^)|  e'^'  df 

m 

S_ = 1 +^^^^ ) \   il'" sin(e*: 12 2Vm=lA  J 
,m 

1 j 

-^0^ 
dt' 

m 

(105) 

where I™ and I'."' are the solutions of (77) with right-hand side vectors 
3     J 

V and V*, respectively.  The impedance matrix is then computed through 

(66),  In carrying out the integrations in (105), and also in (97) and 

(98), an eight-point Gauss-Radau quadrature rule [17] is used.  The 

parameters of the integration rule are shown in Table 1 of Chapter 3, 

For differentiation, a symmetric finite difference formula with 

M = 2,  b, = 1, and b„ = -1 is used.  The multiplier factor c is set 

equal to two tenths of the length of the segment where differentia- 

tion occurs. 

Because of the approximations involved in the solution, the 
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scattering matrix need no longer be symmetric nor unitary.  To deter- 

mine the impedance matrix, S,„ and S„^ are first replaced by their 

average 

^av=i<Sl2+^2l)- ^106) 

The impedance matrix can then have a non-zero real part. 

To test the solution, the computer program is run for a few 

selected problems.  In particular, the problems of the circular post 

and of the symmetrical thin strip are considered.  Some of the results 

obtained are plotted in Figures 5-8. 

In all the cases, the convergence for capacitive susceptance 

B, is monotonic and from above, as can be seen for the thin strip in 

Figure 8.  The computed susceptances are found to agree well with the 

data in the Waveguide Handbook [3], with only a few segments needed 

even for large posts.  A complete assessment of the solution should 

also consider the (Frobenius) norm of the real part of Y = Z  and 

the modulus of difference in transmission coefficients.  These two 

numbers are computed in all program runs, and are usually 0(10  ). 

10.  Concluding Remarks 

The system of capacitive posts in a rectangular waveguide, i.e., 

of metallic obstacles that are uniform along the broad side of the 

waveguide, but are otherwise of arbitrary shape and thickness, has 

been considered in this chapter. 
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0.600 - 

0.500- 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 b 

Figure 5.  The series susceptance of the centered circular post, 
The number of segments used is 30. 
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0.50- 

0.20 - 

0.10 - 

L- ± 
0.05   0.10   0.15   0.20 0.25   0.30  0.35   0.40   0.45   0.50   b 

Figure 6.  The parallel susceptance of the centered circular post.  The 
number of segments used is 30. 
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PHYSICAL GEOMETRY 

d' . 

2, . 

d 

^ 

z=0 

— 
/^ ^JB 

— Y EQUIVALENT NETWORK 

— 

\V °'® 

2" =a6V 
— 

•          Nv 

— 

1          1          1 1              1               t 

,.__^ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 b 

Figure 7.  Network susceptance of the symmetrical thin strip, 
number of segments used is 20. 

The 
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T 1.6% 

1.0 

J L J I L 
2     4     6     8     10   12    14    16    18   20 

NO. OF SEGMENTS 

Figure 8.  The convergence behavior for the symmetrical thin strip 

(|^ = 0.6, J = 0.5). 
AQ       b 
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A complete field analysis of the problem is first given.  From 

the analysis, the scattering and impedance matrix representations 

of the system of posts fully describing its effect on the dominant 

waveguide mode are obtained. Since the whole structure is both recipro- 

cal and lossless, the scattering and impedance matrices are symmetric 

and unitary, and symmetric and pure imaginary, respectively.  The 

latter is then realized in the form of a T-network of capacitive ele- 

ments. 

The susceptances of some post configurations are computed in 

Section 9.  In the actual computation, pulse expansions of the currents 

induced on the posts are used.  Although chosen primarily so as to ren- 

der the procedure economical, the choice is very natural, since pulses 

are instrumental in the definition of integration [15, Chapter 10]. 

This choice has proven very successful, nevertheless, as is evident 

from the performance of the solution. 

Circular posts and thin diaphragms and windows were treated 

early using the Variational Method [1, Chapter 3], [2, Section 8-9]. 

In [18, Section 6-3], the "Singular Integral Equation Method" was 

applied to the symmetrical thin window.  In contrast to the limited 

application of these two methods, the present analysis is quite general. 

It can become the first step in the solution of the system of multiple 

dielectric posts in the capacitive position in a rectangular waveguide. 



Appendix A 

Consider the function defined by the series 

n=l 

cos(nri) cos(nri') e 
n 

-no     <\ 

o = k-rl . 

Since 

cos(nTi) cos(nri') = ir  (cos n(ri-ri') + cos nCn+n')) 

(A.l) becomes 

In (A.2) and (A.3), Re(z) denotes the real part of z, 

Since 

126 

(A.l) 

= iRe (e-J"^^-'^') +e-J"^^+^'^)        (A.2) 

n=l n=l 

1    V  ri 

n=0 
z e C,  z < 1 (A. 4) 

and the series in (A.4) converges uniformly for all z, |z| <   |z^| < 1, 

a term by term integration can be carried out [20, Section 5-4], giv- 

ing 

z 
f o 

dz _  r 
1-z "  ^„ n=0 i 

z  dz 

n+1 

-log (!-.„)= I -^= I ^ 
n=0       n=0 

n 
z 
_c 
n 

(A.5) 
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In (A.5), log denotes the natural logarithm.  Putting z equal to 

^-(a+j(n-n')) 3^d 3-^^+^^'^+^'^^ in (A.5). then using the results 

in (A.3), G  is found to be 

G^ = _ 1 Re[log((l - e-^"+J^'^-'^'^))(l - e-^^+J^^-^^'>>))].   (A.6) 

Finally, since 

(-L _ g-(o+j(n-n')))^ _ g-(a+j(Ti+Ti'))^|2 

e       (e       -  2e     cos(ti+n  )+l)   (^       -  2e     cos(n-n  )+l) 

4e    ^  (cosh a - cos(n+n')) (cosh a - cos(n-ri')) (A. 7) 

G^   becomes 

G-,   = ^ a- T log['^(cosh o-  cos(n+il'))(cosh a- cos(n-ri'))] •       (A.8) 12 i\ 

Since 

= 1 _ e-J(Ti+n') _ g-j(n-n') + ^-nr\ 

=  2e~^^  (cosn- cos  n') (A-9) 

G^ j   as  a  tends  to  zero,   becomes 

G    = - I log   (2|cosn- cos  n'|)   • (A,10) 

The singular part of G^ can readily be extracted from (A.8), 

That is, clearly. 
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G^^ = - - log(2 (cosh (C-C) - cos (n-n'))) (A.11) 
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Chapter 5 

DISCUSSION 

Three systems of waveguide discontinuities have been considered 

in this dissertation. 

The first system is that of multiple apertures of arbitrary 

shape in the transverse plane between two cylindrical waveguides. 

The second system consists of metallic obstacles in a rectangular 

waveguide that are uniform along the narrow side of the waveguide, but 

are otherwise of arbitrary shape and thickness, i.e., a system of in- 

ductive posts.  Finally, the third system consists of metallic ob- 

stacles in a rectangular waveguide that are uniform along the broad 

side of the waveguide, but are otherwise of arbitrary shape and thick- 

ness, i.e., a system of capacltlve posts.  Common between the first 

and second systems are the inductive windows and strips in a rec- 

tangular waveguide, and between the first and third systems are the 

capacitive windows and strips in a rectangular waveguide. 

The analysis of waveguide discontinuities has primarily been 

carried out on an elementary scale.  That is, solution techniques 

have been sought and applied for problems with a single disconti- 

nuity.  Rarely have problems involving three or more discontinuities 

been considered, and only then if they are all of the same shape. 

Although some of the elementary problems are of practical importance 

that warrants considering them, these and others are better worked 

out as special cases of general systems of discontinuities.  This 9 
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of course, provided that general and efficient solutions can be found 

for such systems.  It has been the purpose of this dissertation to 

demonstrate that for the three systems considered. 

Other systems of discontinuities can be handled using the methods 

employed in this dissertation.  In fact, the solutions given in Chap- 

ters 3 and 4 can become the first step in the analysis of systems of 

multiple dielectric posts in the Inductive and capacitive position 

in a rectangular waveguide, respectively.  Another Important system 

of discontinuities, but one for which major revisions in the analysis 

of Chapter 3 are to be made, is that of metallic resonant posts in 

the inductive position in a rectangular waveguide.  These systems, as 

well as others that can be identified, are recomended for future 

study. 

It is believed that advances can be made in the study of the 

waveguide discontinuities by considering systems of discontinuities 

rather than individual discontinuities.  General and efficients solu- 

tions can be developed for these systems as, it is hoped, has been 

demonstrated in this dissertation. 
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